
Parallel Programming with OpenMP

Jemmy Hu
SHARCNET

University of Waterloo

Contents
• Parallel Programming Model
• OpenMP

- Concepts
- Getting Started
- OpenMP Directives

Parallel Regions
Worksharing Constructs
Data Environment
Synchronization
Runtime functions/environment variables

- OpenMP: Performance Issues
- OpenMP: Pitfalls

Race condition
Data Dependences
Deadlock

- Examples –pi
• OpenMP on SHARCNET
• References

Parallel Computing – programming model

• Distributed memory systems
– For processors to share data, the programmer must explicitly

arrange for communication -“Message Passing”
– Message passing libraries:

• MPI (“Message Passing Interface”)
• PVM (“Parallel Virtual Machine”)

• Shared memory systems
– “Thread” based programming (pthread, …)
– Compiler directives (OpenMP)
– Can also do explicit message passing, of course

What is Shared Memory Parallelization?

• All processors can access all the memory in the parallel system
(one address space).

• The time to access the memory may not be equal for all processors
– not necessarily a flat memory

• Parallelizing on a SMP does not reduce CPU time
– it reduces wallclock time

• Parallel execution is achieved by generating multiple threads which
execute in parallel

• Number of threads (in principle) is independent of the number of
processors

OpenMP Concepts

• An Application Program Interface (API) that may be used to explicitly direct
multi-threaded, shared memory parallelism

• Using compiler directives, library routines and environment variables to
automatically generate threaded (or multi-process) code that can run in a
concurrent or parallel environment.

• Portable:
- The API is specified for C/C++ and Fortran
- Multiple platforms have been implemented including most Unix platforms
and Windows NT

• Standardized: Jointly defined and endorsed by a group of major computer
hardware and software vendors

• What does OpenMP stand for?

Open specifications for Multi Processing via collaborative work between
interested parties from the hardware and software industry, government and
academia.

What is it?

OpenMP Application Program Interface: Version 2.5 May 2005
http://www.openmp.org

OpenMP
3.0When??

OpenMP: Goals

• Standardization:
Provide a standard among a variety of shared memory
architectures/platforms

• Lean and Mean:
Establish a simple and limited set of directives for programming
shared memory machines. Significant parallelism can be
implemented by using just 3 or 4 directives.

• Ease of Use:
Provide capability to incrementally parallelize a serial program,
unlike message-passing libraries which typically require an all or
nothing approach
Provide the capability to implement both coarse-grain and fine-grain
parallelism

• Portability:
Supports Fortran (77, 90, and 95), C, and C++
Public forum for API and membership

OpenMP: Fork-Join Model

• OpenMP uses the fork-join model of parallel execution:

FORK: the master thread then creates a team of parallel threads
The statements in the program that are enclosed by the parallel region
construct are then executed in parallel among the various team threads

JOIN: When the team threads complete the statements in the parallel
region construct, they synchronize and terminate, leaving only the
master thread

Dynamic threading

OpenMP excution model (nested parallel)

OpenMP: Getting Started

Required. Proceeds
the structured block
which is enclosed
by this directive.

Optional. Clauses
can be in any order,
and repeated as
necessary unless
otherwise restricted.

A valid OpenMP
directive. Must
appear after the
pragma and before
any clauses.

Required for all
OpenMP C/C++
directives.

newline[clause, ...]directive-name#pragma omp

General Rules:
• Case sensitive
• Directives follow conventions of the C/C++ standards for compiler directives
• Only one directive-name may be specified per directive
• Each directive applies to at most one succeeding statement, which must be a structured

block.
• Long directive lines can be "continued" on succeeding lines by escaping the newline

character with a backslash ("\") at the end of a directive line.

Example: #pragma omp parallel default(shared) private(beta,pi)

OpenMP syntax: C/C++

C / C++ - General Code Structure

#include <omp.h>

main () {
int var1, var2, var3;

Serial code
. . .

Beginning of parallel section. Fork a team of threads.
Specify variable scoping

#pragma omp parallel private(var1, var2) shared(var3)
{

Parallel section executed by all threads
. . .
All threads join master thread and disband

}

Resume serial code
. . .

}

OpenMP syntax: Fortran

Format: (case insensitive)

Optional. Clauses can be in
any order, and repeated as
necessary unless otherwise
restricted.

A valid OpenMP directive.
Must appear after the
sentinel and before any
clauses.

All Fortran OpenMP
directives must begin with
a sentinel. The accepted
sentinels depend upon the
type of Fortran source.
Possible sentinels are:
!$OMP
C$OMP
*$OMP

[clause ...]directive-namesentinel

Example: !$OMP PARALLEL DEFAULT(SHARED) PRIVATE(BETA,PI)

Fixed Form Source (F77):

• !$OMP C$OMP *$OMP are accepted sentinels and must start in column 1
• All Fortran fixed form rules for line length, white space, continuation and

comment columns apply for the entire directive line
• Initial directive lines must have a space/zero in column 6.
• Continuation lines must have a non-space/zero in column 6.

Free Form Source (F90, F95):

• !$OMP is the only accepted sentinel. Can appear in any column, but must be
preceded by white space only.

• All Fortran free form rules for line length, white space, continuation and
comment columns apply for the entire directive line

• Initial directive lines must have a space after the sentinel.
• Continuation lines must have an ampersand as the last non-blank character in

a line. The following line must begin with a sentinel and then the
continuation directives.

General Rules:
• Comments can not appear on the same line as a directive
• Only one directive-name may be specified per directive
• Fortran compilers which are OpenMP enabled generally include a command

line option which instructs the compiler to activate and interpret all OpenMP
directives.

• Several Fortran OpenMP directives come in pairs and have the form
shown below. The "end" directive is optional but advised for readability.

!$OMP directive

[structured block of code]

!$OMP end directive

PROGRAM HELLO

INTEGER VAR1, VAR2, VAR3

Serial code . . .

Beginning of parallel section. Fork a team of threads.
Specify variable scoping

!$OMP PARALLEL PRIVATE(VAR1, VAR2) SHARED(VAR3)
Parallel section executed by all threads
. . .
All threads join master thread and disband

!$OMP END PARALLEL

Resume serial code
. . .
END

Fortran (77)- General Code Structure

OpenMP: compiler

• Compiler flags:
Intel (icc, ifort) -openmp
Pathscale (cc, c++, f77, f90) -openmp
PGI (pgcc, pgf77, pgf90) -mp

f90 –openmp –o hello_openmp hello_openmp.f

OpenMP: simplest example
program hello

write(*,*) "Hello, world!“
end program

[jemmyhu@wha780 helloworld]$ f90 -o hello-seq hello-seq.f90
[jemmyhu@wha780 helloworld]$./hello-seq
Hello, world!
[jemmyhu@wha780 helloworld]$

program hello
!$omp parallel

write(*,*) "Hello, world!"
!$omp end parallel

end program

[jemmyhu@wha780 helloworld]$ f90 -o hello-par1-seq hello-par1.f90
[jemmyhu@wha780 helloworld]$./hello-par1-seq
Hello, world!
[jemmyhu@wha780 helloworld]$

Compiler ignore openmp directive; parallel region concept

OpenMP: simplest example

program hello
!$omp parallel

write(*,*) "Hello, world!"
!$omp end parallel

end program

[jemmyhu@wha780 helloworld]$ f90 -openmp -o hello-par1 hello-par1.f90

[jemmyhu@wha780 helloworld]$./hello-par1

Hello, world!

Hello, world!

[jemmyhu@wha780 helloworld]$

Default threads on whale login node is 2, it may vary from system to system

OpenMP: simplest example
program hello

write(*,*) "before"

!$omp parallel

write(*,*) "Hello, parallel world!"

!$omp end parallel

write(*,*) "after"

end program

[jemmyhu@wha780 helloworld]$ f90 -openmp -o hello-par2 hello-par2.f90

[jemmyhu@wha780 helloworld]$./hello-par2

before

Hello, parallel world!

Hello, parallel world!

after

[jemmyhu@wha780 helloworld]$

OpenMP: simplest example
[jemmyhu@meg34 helloworld]$ sqsub -q threaded -n 4 -o hello-par2.log ./hello-par2

Job <3910> is submitted to queue <threaded>.

[jemmyhu@meg34 helloworld]$ sqjobs

jobid queue state ncpus nodes time command

----- -------- ----- ----- ----- ---- ------------

3910 threaded Q 4 5s ./hello-par2

128 CPUs total, 94 idle, 34 busy; 4 jobs running; 0 suspended, 1 queued.

[jemmyhu@meg34 helloworld]$

Before

Hello, parallel world!

Hello, parallel world!

Hello, parallel world!

Hello, parallel world!

after

OpenMP: simplest example
program hello

write(*,*) "before"

!$omp parallel

write(*,*) "Hello, from thread ", omp_get_thread_num()

!$omp end parallel

write(*,*) "after"

end program

before

Hello, from thread 1

Hello, from thread 0

Hello, from thread 2

Hello, from thread 3

after

Example to use OpenMP API to retrieve a thread’s id

OpenMP example-1: hello world in C

#include <stdio.h>
#include <omp.h>

int main (int argc, char *argv[]) {
int id, nthreads;
#pragma omp parallel private(id)
{

id = omp_get_thread_num();
printf("Hello World from thread %d\n", id);
#pragma omp barrier
if (id == 0) {

nthreads = omp_get_num_threads();
printf("There are %d threads\n",nthreads);

}
}
return 0;

}

OpenMP example-1: hello world in F77

PROGRAM HELLO
INTEGER ID, NTHRDS
INTEGER OMP_GET_THREAD_NUM, OMP_GET_NUM_THREADS

!$OMP PARALLEL PRIVATE(ID)
ID = OMP_GET_THREAD_NUM()
PRINT *, 'HELLO WORLD FROM THREAD', ID

!$OMP BARRIER
IF (ID .EQ. 0) THEN

NTHRDS = OMP_GET_NUM_THREADS()
PRINT *, 'THERE ARE', NTHRDS, 'THREADS'

END IF
!$OMP END PARALLEL

END

OpenMP example-1: hello world in F90

program hello90
use omp_lib
integer :: id, nthreads

!$omp parallel private(id)
id = omp_get_thread_num()
write (*,*) 'Hello World from thread', id
!$omp barrier
if (id .eq. 0) then

nthreads = omp_get_num_threads()
write (*,*) 'There are', nthreads, 'threads'

end if
!$omp end parallel

end program

Compile and Run Result

• Compile

f90 –openmp –o hello_openmp_f hello_world_openmp.f

• Submit job
sqsub –q threaded –n 4 –o hello_openmp.log ./hello_openmp_f

• Run Results (use 4 cpus)

HELLO WORLD FROM THREAD 2

HELLO WORLD FROM THREAD 0

HELLO WORLD FROM THREAD 3

HELLO WORLD FROM THREAD 1

THERE ARE 4 THREADS

Re-examine OpenMP code:

PROGRAM HELLO
INTEGER ID, NTHRDS
INTEGER OMP_GET_THREAD_NUM, OMP_GET_NUM_THREADS

!$OMP PARALLEL PRIVATE(ID)
ID = OMP_GET_THREAD_NUM()
PRINT *, 'HELLO WORLD FROM THREAD', ID

!$OMP BARRIER
IF (ID .EQ. 0) THEN
NTHRDS = OMP_GET_NUM_THREADS()
PRINT *, 'THERE ARE', NTHRDS, 'THREADS'

END IF
!$OMP END PARALLEL

END

Runtime library routines

synchronization

Parallel region directive

Data types: private vs. shared

OpenMP: 3 categories

• Parallel programming: 3 aspects
– specifying parallel execution
– communicating between multiple procs/threads
– Synchronization

• OpenMP approaches:
Directive-based control structures – expressing parallelism
Data environment constructs – communicating
Synchronization constructs – synchronization

Components
of OpenMP Directives

Runtime
Library
routines

Environment
variables

OpenMP Directives

Fortran: directives come in pairs, The "end" directive is optional
but advised for readability

!$OMP directive [clause, …]

[structured block of code]

!$OMP end directive

C/C++: case sensitive

#pragma omp directive [clause,…] newline

[structured block of code]

Basic Directive Formats

OpenMP’s constructs fall into 5 categories:

• Parallel Regions

• Worksharing Constructs

• Data Environment

• Synchronization

• Runtime functions/environment variables

PARALLEL Region Construct: Summary

• A parallel region is a block of code that will be executed by multiple threads.
This is the fundamental OpenMP parallel construct.

• A parallel region must be a structured block
• It may contain any of the following clauses:

#pragma omp parallel [clause ...] newline
if (scalar_expression)
private (list)
shared (list)
default (shared | none)
firstprivate (list)
reduction (operator: list)
copyin (list)

structured_block

C/C++

!$OMP PARALLEL [clause ...]
IF (scalar_logical_expression)
PRIVATE (list)
SHARED (list)
DEFAULT (PRIVATE | SHARED | NONE)
FIRSTPRIVATE (list)
REDUCTION (operator: list)
COPYIN (list)

block
!$OMP END PARALLEL

Fortran

PARALLEL Region Construct: Notes

• When a thread reaches a PARALLEL directive, it creates a team of
threads and becomes the master of the team. The master is a
member of that team and has thread number 0 within that team.

• Starting from the beginning of this parallel region, the code is
duplicated and all threads will execute that code.

• There is an implied barrier at the end of a parallel section. Only the
master thread continues execution past this point.

• If any thread terminates within a parallel region, all threads in the
team will terminate, and the work done up until that point is
undefined.

OpenMP: Parallel Regions

Fortran - Parallel Region Example

PROGRAM HELLO
INTEGER NTHREADS, TID, OMP_GET_NUM_THREADS,

+ OMP_GET_THREAD_NUM

C Fork a team of threads giving them their own copies of variables
!$OMP PARALLEL PRIVATE(TID)

C Obtain and print thread id
TID = OMP_GET_THREAD_NUM()
PRINT *, 'Hello World from thread = ', TID

C Only master thread does this
IF (TID .EQ. 0) THEN

NTHREADS = OMP_GET_NUM_THREADS()
PRINT *, 'Number of threads = ', NTHREADS

END IF

C All threads join master thread and disband
!$OMP END PARALLEL

END

• Every thread executes
all code enclosed in the
parallel section

• OpenMP library
routines are used to
obtain thread identifiers
and total number of
threads

C / C++ - Parallel Region Example

#include <omp.h>

main () {

int nthreads, tid;

/* Fork a team of threads giving them their own copies of variables */
#pragma omp parallel private(tid)
{ /* Obtain and print thread id */

tid = omp_get_thread_num();
printf("Hello World from thread = %d\n", tid);

/* Only master thread does this */
if (tid == 0) {

nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}
} /* All threads join master thread and terminate */

}

• Clauses involved:
private

• The number of threads in a parallel region is determined
by the following factors, in order of precedence:
– Use of the omp_set_num_threads() library function
– Setting of the OMP_NUM_THREADS environment variable
– Implementation default - usually the number of CPUs on a node,

though it could be dynamic (see next bullet).

• Threads are numbered from 0 (master thread) to N-1

PARALLEL Region Construct: How Many Threads?

• IF clause: If present, it must evaluate to .TRUE. (Fortran) or non-
zero (C/C++) in order for a team of threads to be created.
Otherwise, the region is executed serially by the master thread.

• A parallel region must be a structured block that does not span
multiple routines or code files

• It is illegal to branch into or out of a parallel region

• Only a single IF clause is permitted

!$omp parallel do if (n .ge. 800)

do i = 1, n

z(i) = a*x(i) + y

enddo

PARALLEL Region Construct: Clauses and
Restrictions

if takes a Boolean expression as
an argument. If ‘True’, the loop is
run parallel, if ‘False’, the loop is
excuted serially, to avoid
overhead

A[n,n] x B[n] = C[n]

for (i=0; i < SIZE; i++)
{

for (j=0; j < SIZE; j++)
c[i] += (A[i][j] * b[i]);

}

Example: Matrix-Vector Multiplication

#pragma omp parallel
for (i=0; i < SIZE; i++)
{

for (j=0; j < SIZE; j++)
c[i] += (A[i][j] * b[i]);

}

Can we simply add one parallel directive?

/* Create a team of threads and scope variables */
#pragma omp parallel shared(A,b,c,total) private(tid,i,j,istart,iend)

{
tid = omp_get_thread_num();
nid = omp_get_num_threads();

istart = tid*SIZE/nid;
iend = (tid+1)*SIZE/nid;

for (i=istart; i < iend; i++)
{
for (j=0; j < SIZE; j++)

c[i] += (A[i][j] * b[i]);

/* Update and display of running total must be serialized */
#pragma omp critical

{
total = total + c[i];
printf(" thread %d did row %d\t c[%d]=%.2f\t",tid,i,i,c[i]);
printf("Running total= %.2f\n",total);

}

} /* end of parallel i loop */

} /* end of parallel construct */

Matrix-Vector Multiplication: parallel region

OpenMP: Work-sharing constructs:

• A work-sharing construct divides the execution of the enclosed code
region among the members of the team that encounter it.

• Work-sharing constructs do not launch new threads

• There is no implied barrier upon entry to a work-sharing construct,
however there is an implied barrier at the end of a work sharing
construct.

A motivating example

DO/for Format

#pragma omp for [clause ...] newline
schedule (type [,chunk])
ordered private (list)
firstprivate (list)
lastprivate (list)
shared (list)
reduction (operator: list)
nowait

for_loop

C/C++

!$OMP DO [clause ...]
SCHEDULE (type [,chunk])
ORDERED PRIVATE (list)
FIRSTPRIVATE (list)
LASTPRIVATE (list)
SHARED (list)
REDUCTION (operator | intrinsic : list)

do_loop
!$OMP END DO [NOWAIT]

Fortran

Types of Work-Sharing Constructs:

SINGLE -
serializes a
section of
code

SECTIONS - breaks work into
separate, discrete sections.
Each section is executed by a
thread. Can be used to
implement a type of "functional
parallelism".

DO / for - shares iterations of a
loop across the team.
Represents a type of "data
parallelism".

OpenMP Work-sharing constructs: Notes

• A work-sharing construct must be enclosed dynamically within a
parallel region in order for the directive to execute in parallel.

• Work-sharing constructs must be encountered by all members of a
team or none at all

• Successive work-sharing constructs must be encountered in the
same order by all members of a team

• The DO / for directive specifies that the iterations of the loop immediately
following it must be executed in parallel by the team. This assumes a parallel
region has already been initiated, otherwise it executes in serial on a single
processor.

#pragma omp parallel

#pragma omp for

for (I=0;I<N;I++){

NEAT_STUFF(I);

}

Work-sharing constructs: Loop construct

!$omp parallel
!$omp do

do-loop
!$omp end do
!$omp parallel

program loop
implicit none
integer, parameter :: N = 60000000
integer :: i
real :: x(N)

do i = 1, N
x(i) = 1./real(i)

end do

end program

Simple examples: serial do-loop code

program loop
implicit none
integer, parameter :: N = 60000000
integer :: i
integer :: nprocs, myid, nb, istart, iend
real :: x(N)

!$omp parallel private(myid,istart,iend)
nprocs = omp_get_num_threads()
myid = omp_get_thread_num()
nb = N/nprocs
istart = myid*nb + 1
if (myid /= nprocs-1) then

iend = (myid + 1)*nb
else

iend = N
end if
do i = istart, iend

x(i) = 1./real(i)
end do

!$omp end parallel

end program

parallel do-loop

one possible parallel
version of the preceding
code.
(distribute the loop to
different threads by hard
coding)

program loop
implicit none
integer, parameter :: N = 60000000
integer :: i
real :: x(N)

!$omp parallel
!$omp do

do i = 1, N
x(i) = 1./real(i)

end do
!$omp end do

!$omp end parallel

end program

Do directive

Instead of hard-coding,
we can use OpenMP
provides task sharing
directives (section) to
achieve the same goal.

program loop
implicit none
integer, parameter :: N = 60000000
integer :: i
real :: x(N)

!$omp parallel do
do i = 1, N

x(i) = 1./real(i)
end do

!$omp end parallel do

end program

Parallel do: Combined Directives

The schedule clause

schedule(static)

• Iterations are divided evenly among threads
c$omp do shared(x) private(i)
c$omp& schedule(static)

do i = 1, 1000
x(i)=a

enddo

schedule(static,chunk)

• Divides the work load in to chunk sized parcels
• If there are N threads, each thread does every Nth chunk of work

c$omp do shared(x)private(i)
c$omp& schedule(static,1000)

do i = 1, 12000
… work …

enddo

• Divides the workload into chunk
sized parcels.

• As a thread finishes one chunk,
it grabs the next available chunk.

• Default value for chunk is 1.
• More overhead, but potentially

better load balancing.

c$omp do shared(x) private(i)
c$omp& schedule(dynamic,1000)

do i = 1, 10000
… work …

end do

schedule(dynamic,chunk)

• Like dynamic scheduling, but the
chunk size varies dynamically.

• Chunk sizes depend on the number
of unassigned iterations.

• The chunk size decreases toward the
specified value of chunk.

• Achieves good load balancing with
relatively low overhead.

• Insures that no single thread will be
stuck with a large number of
leftovers while the others take a
coffee break.

c$omp do shared(x) private(i)
c$omp& schedule(guided,55)
do i = 1, 12000
… work …
end do

schedule(guided,chunk)

Examples (no k):

n=10 (iterations)
p=4 (threads)
q = cerling (10/4) =3

r = p*q – n =12 – 10 = 2

0 < 2 (r) < 4 (p)

Compliant-1: chunk_size k = 3

Compliant-2: chunk_size=3 for 2 (p-r)
threads, and 2 (q-1) for 2 (r) threads

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

More about Chunk_size

Examples (k=2):

n=10 (iterations); p=4 (threads)

q = cerling (10/4) =3 (3 to thread-1)

n = max (n-q, p*k) = max(10-3, 4*2) = 8
q2 = cerling (8/4) =2 (2 to thread-2)

q3 = cerling (8/4) =2 (2 to thread-3)
q4 = cerling (8/4) =2 (2 to thread-4)

Remaining 1 for whoever finished first

1 2 3

4 5

10

6 7

8 9

schedule(runtime)

• Scheduling method is determined at runtime.
• Depends on the value of environment variable OMP_SCHEDULE
• This environment variable is checked at runtime, and the method is

set accordingly.
• Scheduling method is static by default.
• Chunk size set as (optional) second argument of string expression.
• Useful for experimenting with different scheduling methods without

recompiling.

origin% setenv OMP_SCHEDULE static,1000
origin% setenv OMP_SCHEDULE dynamic

DO/for construct: Notes

• The DO loop can not be a DO WHILE loop, or a loop without loop
control. Also, the loop iteration variable must be an integer and the
loop control parameters must be the same for all threads.

• Program correctness must not depend upon which thread executes
a particular iteration.

• It is illegal to branch out of a loop associated with a DO/for directive.

• The chunk size must be specified as a loop invarient integer
expression, as there is no synchronization during its evaluation by
different threads.

• ORDERED and SCHEDULE clauses may appear once each.

Determining the schedule for a work-sharing loop.

Example: Simple vector-add program

• Three Arrays: A, B, C

• Arrays A, B, C, and variable N will be shared by all threads.

• Variable I will be private to each thread; each thread will have its
own unique copy.

• The iterations of the loop will be distributed dynamically in CHUNK
sized pieces.

• Threads will not synchronize upon completing their individual pieces
of work (NOWAIT).

Fortran - DO Directive Example

PROGRAM VEC_ADD_DO

INTEGER N, CHUNKSIZE, CHUNK, I
PARAMETER (N=1000)
PARAMETER (CHUNKSIZE=100)
REAL A(N), B(N), C(N)

! Some initializations
DO I = 1, N

A(I) = I * 1.0
B(I) = A(I)

ENDDO
CHUNK = CHUNKSIZE

!$OMP PARALLEL SHARED(A,B,C,CHUNK) PRIVATE(I)
!$OMP DO SCHEDULE(DYNAMIC,CHUNK)

DO I = 1, N
C(I) = A(I) + B(I)

ENDDO
!$OMP END DO NOWAIT
!$OMP END PARALLEL

END

C / C++ - for Directive Example

#include <omp.h>
#define CHUNKSIZE 100
#define N 1000

main () {
int i, chunk;
float a[N], b[N], c[N];

/* Some initializations */
for (i=0; i < N; i++)

a[i] = b[i] = i * 1.0;
chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,chunk) private(i)
{
#pragma omp for schedule(dynamic,chunk) nowait
for (i=0; i < N; i++)

c[i] = a[i] + b[i];
} /* end of parallel section */

}

Purpose:

1. The SECTIONS directive is a non-iterative work-sharing
construct. It specifies that the enclosed section(s) of code are to
be divided among the threads in the team.

2. Independent SECTION directives are nested within a SECTIONS
directive. Each SECTION is executed once by a thread in the
team. Different sections may be executed by different threads. It
is possible that for a thread to execute more than one section if it
is quick enough and the implementation permits such.

Work-Sharing Constructs: SECTIONS Directive

Format:

#pragma omp sections [clause ...] newline
private (list)
firstprivate (list)
lastprivate (list)
reduction (operator: list)
nowait

{
#pragma omp section newline

structured_block
#pragma omp section newline

Structured_block
}

C/C++

!$OMP SECTIONS [clause ...]
PRIVATE (list)
FIRSTPRIVATE (list)
LASTPRIVATE (list)
REDUCTION (operator | intrinsic : list)

!$OMP SECTION
block

!$OMP SECTION
block

!$OMP END SECTIONS [NOWAIT]

Fortran

Clauses:

1. There is an implied barrier at the end of a SECTIONS
directive, unless the NOWAIT/nowait clause is used.

2. Clauses are described in detail later, in the Data Scope
Attribute section.

Restrictions:

1. It is illegal to branch into or out of section blocks.

2. SECTION directives must occur within the lexical extent of an
enclosing SECTIONS directive

Questions:
What happens if the number of threads and the number of SECTIONs are
different? More threads than SECTIONs? Less threads than SECTIONs?

Which thread executes which SECTION?

Answer: It is up to the implementation to decide which threads
will excute a section and which threads will not, and it can vary
from execution to execution

Answer: If there are more threads than sections, some threads will
not execute a section and some will. If there are more sections than
threads, the implementation defines how the extra sections are
executed.

program compute
implicit none
integer, parameter :: NX = 10000000
integer, parameter :: NY = 20000000
integer, parameter :: NZ = 30000000
real :: x(NX)
real :: y(NY)
real :: z(NZ)
integer :: i, j, k
real :: ri, rj, rk
write(*,*) "start"
do i = 1, NX

ri = real(i)
x(i) = atan(ri)/ri

end do
do j = 1, NY

rj = real(j)
y(j) = cos(rj)/rj

end do
do k = 1, NZ

rk = real(k)
z(k) = log10(rk)/rk

end do
write(*,*) "end"

end program

Examples: 3-loops

Serial code with
three independent
tasks, namely, three do
loops.
each operating on a
dierent array using
dierent loop counters
and temporary scalar
variables.

program compute
……

write(*,*) "start"
!$omp parallel
select case (omp_get_thread_num())

case (0)
do i = 1, NX

ri = real(i)
x(i) = atan(ri)/ri

end do
case (1)

do j = 1, NY
rj = real(j)
y(j) = cos(rj)/rj

end do
case (2)

do k = 1, NZ
rk = real(k)

z(k) = log10(rk)/rk
end do

end select
!$omp end parallel
write(*,*) "end"

end program

Examples: 3-loops

one possible parallel
version of the preceding
code.
(distribute the loop to
different threads by hard
coding)

program compute
……

write(*,*) "start"
!$omp parallel

!$omp sections
!$omp section

do i = 1, NX
ri = real(i)

x(i) = atan(ri)/ri
end do

!$omp section
do j = 1, NY

rj = real(j)
y(j) = cos(rj)/rj

end do
!$omp section

do k = 1, NZ
rk = real(k)

z(k) = log10(rk)/rk
end do

!$omp end sections
!$omp end parallel

write(*,*) "end"
end program

Examples: 3-loops

Instead of hard-coding,
we can use OpenMP
provides task sharing
directives (section) to
achieve the same goal.

Example: Vector-add

PROGRAM VEC_ADD_SECTIONS
INTEGER N, I
PARAMETER (N=1000)
REAL A(N), B(N), C(N)

! Some initializations
DO I = 1, N

A(I) = I * 1.0
B(I) = A(I)

ENDDO

!$OMP PARALLEL SHARED(A,B,C),
PRIVATE(I)

!$OMP SECTIONS
!$OMP SECTION

DO I = 1, N/2
C(I) = A(I) + B(I)

ENDDO
!$OMP SECTION

DO I = 1+N/2, N
C(I) = A(I) + B(I)

ENDDO
!$OMP END SECTIONS NOWAIT
!$OMP END PARALLEL

END

Fortran: vector-add

• The first n/2 iterations of the DO loop will be distributed to the first thread,
and the rest will be distributed to the second thread

• When each thread finishes its block of iterations, it proceeds with
whatever code comes next (NOWAIT)

#include <omp.h>
#define N 1000

main () {
int i; float a[N], b[N], c[N];
/* Some initializations */
for (i=0; i < N; i++)

a[i] = b[i] = i * 1.0;

#pragma omp parallel shared(a,b,c) private(i)
{

#pragma omp sections nowait
{

#pragma omp section
for (i=0; i < N/2; i++)

c[i] = a[i] + b[i];
#pragma omp section
for (i=N/2; i < N; i++)

c[i] = a[i] + b[i];
} /* end of sections */

} /* end of parallel section */
}

C/C++: vector-add

Work-Sharing Constructs: SINGLE Directive

Purpose:

The SINGLE directive specifies that the enclosed code is to
be executed by only one thread in the team.
May be useful when dealing with sections of code that are
not thread safe (such as I/O)

• Ensures that a code block is executed by
only one thread in a parallel region.

• The thread that reaches the single
directive first is the one that executes the
single block.

• Equivalent to a sections directive with a
single section - but a more descriptive
syntax.

• All threads in the parallel region must
encounter the single directive.

• Unless nowait is specified, all
noninvolved threads wait at the end of the
single block

c$omp parallel private(i) shared(a)
c$omp do

do i = 1, n
…work on a(i) …
enddo

c$omp single
… process result of do …

c$omp end single
c$omp do

do i = 1, n
… more work …
enddo

c$omp end parallel

OpenMP Work Sharing Constructs - single

• Fortran syntax:

c$omp single [clause [clause…]]
structured block

c$omp end single [nowait]

where clause is one of
– private(list)
– firstprivate(list)

OpenMP Work Sharing Constructs - single

• C syntax:

#pragma omp single [clause [clause…]]
structured block

where clause is one of
– private(list)
– firstprivate(list)
– nowait

OpenMP Work Sharing Constructs - single

OpenMP Work Sharing Constructs - single

Clauses:
• Threads in the team that do not execute the SINGLE directive, wait at

the end of the enclosed code block, unless a NOWAIT/nowait clause
is specified.

Restrictions:
• It is illegal to branch into or out of a SINGLE block.

Examples

PROGRAM single_1

write(*,*) 'start'
!$OMP PARALLEL DEFAULT(NONE), private(i)

!$OMP DO
do i=1,5
write(*,*) i
enddo
!$OMP END DO

!$OMP SINGLE
write(*,*) 'begin single directive'
do i=1,5
write(*,*) 'hello',i
enddo
!$OMP END SINGLE

!$OMP END PARALLEL

write(*,*) 'end'

END

[jemmyhu@wha780 single]$./single-1
start
1
4
5
2
3
begin single directive
hello 1
hello 2
hello 3
hello 4
hello 5
end

[jemmyhu@wha780 single]$

PROGRAM single_3
INTEGER NTHREADS, TID, TID2,
OMP_GET_NUM_THREADS, OMP_GET_THREAD_NUM

write(*,*) "Start"
!$OMP PARALLEL PRIVATE(TID, i)

!$OMP DO
do i=1,8
TID = OMP_GET_THREAD_NUM()
write(*,*) "thread: ", TID, 'i = ', i
enddo
!$OMP END DO

!$OMP SINGLE
write(*,*) "SINGLE - begin"
do i=1,8
TID2 = OMP_GET_THREAD_NUM()
PRINT *, 'This is from thread = ', TID2
write(*,*) 'hello',i
enddo
!$OMP END SINGLE

!$OMP END PARALLEL
write(*,*) "End "
END

[jemmyhu@wha780 single]$
./single-3
Start
thread: 0 i = 1
thread: 1 i = 5
thread: 1 i = 6
thread: 1 i = 7
thread: 1 i = 8
thread: 0 i = 2
thread: 0 i = 3
thread: 0 i = 4
SINGLE - begin
This is from thread = 0
hello 1
This is from thread = 0
hello 2
This is from thread = 0
hello 3
This is from thread = 0
hello 4
This is from thread = 0
hello 5
This is from thread = 0
hello 6
This is from thread = 0
hello 7
This is from thread = 0
hello 8
End

Data Scope Clauses

• SHARED (list)

• PRIVATE (list)

• FIRSTPRIVATE (list)

• LASTPRIVATE (list)

• DEFAULT (list)

• THREADPRIVATE (list)

• COPYIN (list)

• REDUCTION (operator | intrinsic : list)

program scope
implicit none
integer :: myid, myid2
write(*,*) "before"
!$omp parallel private(myid2)

myid = omp_get_thread_num()
myid2 = omp_get_thread_num()
write(*,*) "myid myid2 : ", myid, myid2

!$omp end parallel
write(*,*) "after"

end program

Data Scope Example (shared vs private)

myid = omp get thread num()
! updates shared copy
myid2 = omp get thread num()
! updates private copy
write(*,*) ``myid myid2 : ``, myid, myid2

integer :: myid2 !private copy

integer :: myid,myid2

write(*,*) ``before''

write(*,*) ``after''

[jemmyhu@silky:~/CES706/openmp/Fortran/data-scope] ./scope-ifort
before
myid myid2 : 50 8
myid myid2 : 32 18
myid myid2 : 62 72
myid myid2 : 79 17
myid myid2 : 124 73
myid myid2 : 35 88
myid myid2 : 35 37
………..
………..

myid myid2 : 35 114
myid myid2 : 35 33
myid myid2 : 35 105
myid myid2 : 35 122
myid myid2 : 35 68
myid myid2 : 35 51
myid myid2 : 35 81
after

[jemmyhu@silky:~/CES706/openmp/Fortran/data-scope]

Changing default scoping rules: C vs Fortran

• Fortran

default (shared | private | none)

index variables are private

• C/C++

default(shared | none)

- no defualt (private): many standard C libraries are implemented using
macros that reference global variables

serial loop index variable is shared

- C for construct is so general that it is difficult for the compiler to
figure out which variables should be privatized.

Default (none): helps catch scoping errors

Default scoping rules in Fortran

subroutine caller(a, n)
Integer n, a(n), I, j, m
m = 3

!$omp parallel do
do i = 1, N

do j = 1, 5
call callee(a(j), m, j)

end do
end do

end

subroutine callee(x, y, z)
common /com/ c
Integer x, y, z, c, ii, cnt
save cnt

cnt = cnt +1
do ii = 1, z

x = y +z
end do
end

cnt

ii

c

z

y

x

m

j

i

n

a

Variable

shared no local var of called subrout with

save attribute

private yes local stack var of called subrout

shared yes in a common block

private yes actual para. is j, which is private

shared yes actual para. is m, which is shared

shared yes actual para. is a, which is shared

shared yes declared outside par construct

private yes Fortran seq. loop index var

private yes parallel loop index variable

shared yes declared outside par construct

shared yes declared outside par construct

Scope Is Use Safe? Reason dor Scope

Default scoping rules in C

void caller(int a[], int n)
{

int I, j, m=3;

#pragma omp parallel for
for (i = 0; i<n; i++){

int k = m;
for(j=1; j<=5; j++){

callee(&a[i], &k, j);
}

}
extern int c;

void callee(int *x, int *y, int z)
{

int ii;
static int, cnt;

cnt++;
for(ii=0; ii<z; ii++){

*x = *y +c;
}

shared yes declared as externc

private yes local stack var of called subroutii

shared no declared as staticcnt

Scope Is Use Safe? Reason dor ScopeVariable

shared yes declared outside par constructa

shared yes declared outside par constructn

private yes parallel loop index variablei

shared no loop index var, but not in Fortranj

shared yes declared outside par constructm

private yes Value parameterz

shared yes actual para. is k, which is shared*y

private yes Value parametery

shared yes actual para. is a, which is shared*x

private yes Value parameterx

private yes auto var declared inside par constk

• Allows safe global calculation or
comparison.

• A private copy of each listed variable
is created and initialized depending on
operator or intrinsic (e.g., 0 for +).

• Partial sums and local mins are
determined by the threads in parallel.

• Partial sums are added together from
one thread at a time to get gobal sum.

• Local mins are compared from one
thread at a time to get gmin.

c$omp do shared(x) private(i)
c$omp& reduction(+:sum)
do i = 1, N
sum = sum + x(i)
end do

c$omp do shared(x) private(i)
c$omp& reduction(min:gmin)
do i = 1,N
gmin = min(gmin,x(i))
end do

reduction(operator|intrinsic:var1[,var2])

reduction(operator|intrinsic:var1[,var2])

• Listed variables must be shared in the enclosing parallel context.

• In Fortran
– operator can be +, *, -, .and., .or., .eqv., .neqv.
– intrinsic can be max, min, iand, ior, ieor

• In C
– operator can be +, *, -, &, ^, |, &&, ||
– pointers and reference variables are not allowed in reductions!

PROGRAM REDUCTION
USE omp_lib
IMPLICIT NONE
INTEGER tnumber
INTEGER I,J,K
I=1
J=1
K=1
PRINT *, "Before Par Region: I=",I," J=", J," K=",K
PRINT *, ""

!$OMP PARALLEL PRIVATE(tnumber) REDUCTION(+:I) REDUCTION(*:J)
REDUCTION(MAX:K)

tnumber=OMP_GET_THREAD_NUM()
I = tnumber
J = tnumber
K = tnumber
PRINT *, "Thread ",tnumber, " I=",I," J=", J," K=",K

!$OMP END PARALLEL

PRINT *, ""
print *, "Operator + * MAX"
PRINT *, "After Par Region: I=",I," J=", J," K=",K

END PROGRAM REDUCTION

[jemmyhu@nar316 reduction]$./para-reduction
Before Par Region: I= 1 J= 1 K= 1

Thread 0 I= 0 J= 0 K= 0
Thread 1 I= 1 J= 1 K= 1

Operator + * MAX
After Par Region: I= 2 J= 0 K= 1

[jemmyhu@nar316 reduction]$

Scope clauses that can appear
on a parallel construct

• shared and private explicitly scope specific variables

• firstprivate and lastprivate perform initialization and
finalization of privatized variables

• default changes the default rules used when
variables are not explicitly scoped

• reduction explicitly identifies reduction variables

General Properties of Data Scope Clauses

• directive with the scope clause must be within the lexical extent of
the declaration

• A variable in a data scoping clause cannot refer to a portion of an
object, but must refer to the entire object (e.g., not an individual
array element but the entire array)

• A directive may contain multiple shared and private scope clauses;
however, an individual variable can appear on at most a single
clause (e.g., a variable cannot be declared as both shared and
private)

• data references to variables that occur within the lexical extent of
the parallel loop are affected by the data scope clauses; however,
references from subroutines invoked from within the loop are not
affected

OpenMP: Synchronization

OpenMP has the following constructs to
support synchronization:

• – atomic
• – critical section
• – barrier
• – flush
• – ordered
• – single
• – master

Synchronization categories

• Mutual Exclusion Synchronization
critical
atomic

• Event Synchronization
barrier
ordered
master

• Custom Synchronization
flush
(lock – runtime library)

Named Critical Sections

cur_max = min_infinity

cur_min = plus_infinity

!$omp parallel do

do I = 1, n

if (a(i).gt. cur_max) then

!$omp critical (MAXLOCK)

if (a(i).gt. cur_max) then

cur_max = a(i)

endif

!$omp critical (MAXLOCK)

endif

if (a(i).lt. cur_min) then
!$omp critical (MINLOCK)

if (a(i).lt. cur_max) then
cur_min = a(i)

endif
!$omp critical (MINLOCK)

endif
enddo

A named critical section must synchronize with other critical sections
of the same name but can execute concurrently with critical sections of
a different name.

Barriers are used to synchronize the execution of multiple threads
within a parallel region, not within a work-sharing construct.

Ensure that a piece of work has been completed before moving on to
the next phase

!$omp parallel private(index)
index = generate_next_index()
do while (inex .ne. 0)

call add_index (index)
index = generate_next_index()

enddo

! Wait for all the indices to be generated
!$omp barrier

index = get_next_index()
do while (inex .ne. 0)

call process_index (index)
index = get_next_index()

enddo
!omp end parallel

Ordered Sections

• Impose an order across the iterations of a parallel loop

• Identify a portion of code within each loop iteration that must be
executed in the original, sequential order of the loop iterations.

• Restrictions:

If a parallel loop contains an ordered directive, then the parallel loop
directive itself must contain the ordered clause

An iteration of a parallel loop is allowed to encounter at most one ordered
section

!$omp parallel do ordered
do i = 1, n

a(i) = … complex calculation here …

! Wait until the previous iteration has finished its section
!$omp ordered

print *, a(i)
! Signal the completion of ordered from this iteration

!omp end ordered
enddo

OpenMP: Library routines

• Lock routines
– omp_init_lock(), omp_set_lock(), omp_unset_lock(),
omp_test_lock()

• Runtime environment routines:
– Modify/Check the number of threads

– omp_set_num_threads(), omp_get_num_threads(),
omp_get_thread_num(), omp_get_max_threads()

– Turn on/off nesting and dynamic mode
– omp_set_nested(), omp_set_dynamic(),

omp_get_nested(),
omp_get_dynamic()

– Are we in a parallel region?
– omp_in_parallel()

– How many processors in the system?
– omp_num_procs()

Lock: low-level synchronization functions

• Why use lock
1) The synchronization protocols required by a problem cannot be

expressed with OpenMP’s high-level synchronization constructs
2) The parallel overhead incurred by OpenMP’s high-level synchronization

constructs is too large

The simple lock routines are as follows:
• omp_init_lock routine initializes a simple lock.
• omp_destroy_lock routine uninitializes a simple lock.
• omp_set_lock routine waits until a simple lock is available, and then sets it.
• omp_unset_lock routine unsets a simple lock.
• omp_test_lock routine tests a simple lock, and sets it if it is available.

Formats (omp.h)
C/C++ Fortran

data type omp_lock_t nvar must be an integer variable of Fortran
kind=omp_nest_lock_kind.

void omp_init_lock(omp_lock_t *lock); subroutine omp_init_lock(svar)
integer (kind=omp_lock_kind) svar

OpenMP: Environment Variables

• Control how “omp for schedule(RUNTIME)” loop
iterations are scheduled.
– OMP_SCHEDULE “schedule[, chunk_size]”

• Set the default number of threads to use.
– OMP_NUM_THREADS int_literal

• Can the program use a different number of threads in
each parallel region?
– OMP_DYNAMIC TRUE || FALSE

• Will nested parallel regions create new teams of
threads, or will they be serialized?
– OMP_NESTED TRUE || FALSE

OpenMP: Performance Issues

Performance Matrices

• Speedup: refers to how much a parallel algorithm is faster than a

corresponding sequential algorithm

• Size up:

• Scalability

Scalability

Size up

Speedup

n ×

n ×

Data

n ×

n ×

CPUs

?

n?

1/n ?

Time

Key Factors that impact performance

• Coverage

• Granularity

• Load balancing

• Locality

• synchronization

Software/Programming issues

Highly tied with Hardware

Coverage and Amdahl's law

More technically, the law is concerned with the speedup
achievable from an improvement to a computation that affects a
proportion P of that computation where the improvement has a
speedup of Sp. (For example, if an improvement can speed up
30% of the computation, P will be 0.3; if the improvement makes
the portion affected twice as fast, S will be 2). Amdahl's law states
that the overall speedup of applying the improvement will be

.

S = 1/[(1-0.3)+(0.3/2)] = 1.176

Assume that a task has two independent parts, A and B. B takes
roughly 25% of the time of the whole computation. By working very
hard, one may be able to make this part 5 times faster, but this only
reduces the time for the whole computation by a little. In contrast, one
may need to perform less work to make part A be twice as fast. This
will make the computation much faster than by optimizing part B, even
though B got a bigger speed-up, (5x versus 2x).

How many processors can
we really use?

Let’s say we have a
legacy code such that is
it only feasible to
convert half of the
heavily used routines to
parallel:

Amdahl’s Law

Amdahl’s Law

If we run this on a parallel
machine with five
processors:

Our code now takes about
60s. We have sped it up
by about 40%. Let’s say
we use a thousand
processors:

We have now sped our
code by about a factor
of two.

If only half portion of the program is sequential, the theoretical maximum
speedup using parallel computing would be 2 as shown in the diagram no
matter how many processors are used. i.e. (1/(0.5+(1-0.5)/N)) when N is
very big

The speedup of a program using multiple processors in parallel computing
is limited by the sequential fraction of the program.

Case 1: use 2 CPUs to get overall 1.8 times speedup
1.8 = 1/[(1-p) + p/2] p = 2 – 2/1.8 = .89

Case 2: use 10 CPUs to get overall 9 times speedup
9 = 1/[(1-p) + p/10] 9p = 10 – 10/9 p = .988

Amdahl’s Law
This seems pretty depressing, and it does point out one limitation of

converting old codes one subroutine at a time. However, most new
codes, and almost all parallel algorithms, can be written almost entirely
in parallel (usually, the “start up” or initial input I/O code is the
exception), resulting in significant practical speed ups. This can be
quantified by how well a code scales which is often measured as
efficiency.

Latency and Bandwidth
Even with the "perfect" network we have here, performance is determined

by two more quantities that, together with the topologies we'll look at,
pretty much define the network: latency and bandwidth. Latency can
nicely be defined as the time required to send a message with 0 bytes
of data. This number often reflects either the overhead of packing your
data into packets, or the delays in making intervening hops across the
network between two nodes that aren't next to each other.

Bandwidth is the rate at which very large packets of information can be
sent. If there was no latency, this is the rate at which all data would be
transferred. It often reflects the physical capability of the wires and
electronics connecting nodes.

Granularity
• Invoke a parallel region or loop incurs a certain overhead for going parallel –

create save threads and hand off work to the threads

• All threads execute a barrier at the end of parallel region or loop

• Overhead? parallel region vs. loop (from book, on SGI Origin 2000)

800016

40008

29004

24002

18001

CyclesProcessors/Threads

!omp parallel do
do i = 1, 16
enddo

!$omp end parallel do

!omp do
do i = 1, 16
enddo

!$omp end do

290016

18008

17004

17002

22001

CyclesProcessors/Threads

Granularity: continue

• In general, one should not parallelize a loop or region unless it
takes significant more time to execute then the parallel overhead

• Loop-level parallelism vs. domain decomposition

!$omp do
scales much better (cheaper) than the
!$omp parallel do

using the coarse-grained approach will decrease the overhead
significantly

Load Balance

Example: Sparse matrix
Data is not uniformly distributed, one thread will get more points than
another.

Solution: Dynamic schedule
If load balancing is the most important issue to performance, perhaps we
should use dynamic scheduling.
However, dynamic schedule is more cost than static:
1) more synchronization cost: each thread needs to go to the runtime

library after each iteration and ask for another iteration to execute.
Increase the chunk size can reduce the synchronization, but it may back
to load-balance again.

2) data locality (distance in the cache, etc)

Load Balance: continue

Example: dense triangle matrix-scaling

for (i=0; I < n; i++){

for (j=I; j<n; j++){

a[i][j] = c* a[i][j]

}

}

Each iteration has a different amount of work, but the amount of work
varies regularly

Each successive iteration has a linearly decreasing amount of work

Solution: static schedule with a relatively small chunk size

Locality

Column major arrays vs. row major arrays

A two dimentional array like A[3][3]:

A11 A12 A13
A21 A22 A23
A31 A32 A33

Main memory is just like a big 1D array with indices from 0x0 to 0Xffffff

This is FORTRAN's column major order in memory:
A11 A21 A31 A12 A22 A32 A13 A23 A33

This is C/C++'s row major order in memory:
A11 A12 A13 A21 A22 A23 A31 A32 A33

Which of the following is faster in C?

- Race condition
- Data Dependences
- Deadlock

OpenMP: pitfalls

2 major SMP errors

• Race Conditions

– The outcome of a program depends on the
detailed timing of the threads in the team.

• Deadlock

– Threads lock up waiting on a locked resource
that will never become free.

Race Conditions: Examples

• The result varies unpredictably depending on the order
in which threads execute the sections.

• Wrong answers are produced without warning!

Race Conditions: Examples

• The result varies unpredictably because the value of x isn’t
correct until the barrier at the end of the do loop is reached.

• Wrong answers are produced without warning!
• Be careful when using nowait!

Race Conditions: Examples

• The result varies unpredictably because access to the shared
variable tmp is not protected.

• Wrong answers are produced without warning!
• Probably want to make tmp private.

Data Dependences

• Detection

• Classification

• Removal

Detection

• Loop-carried dependence: dependency between statements executed in
different iterations of the loop

• Dependences are always associated with a particular memory location,
we can detect them by analyzing how each variable is used within the
loop

- Is the variable only read and never assigned within the loop body? If so,

there are no dependences involving it

- Otherwise, consider the memory locations that make up the variable

and that are assigned within the loop. For each such location, is there

exactly one iteration that accesses the location? If so, there are no

dependences involving the variable. If not, there is a dependence.

10 do i = 2, n

a(i) = a(i) + a(i-1)

enddo

20 do i = 2, n, 2

a(i) = a(i) + a(i-1)

enddo

30 do i = 2, n/2

a(i) = a(i) + a(i + n/2)

enddo

40 do i = 2, n/2+1

a(i) = a(i) + a(i + n/2)

enddo

Loops with or without data dependence

10 yes

each iteration writes an element of
a that is read by the next iteration

20 no

loop has a stride of 2, it writes every
other element

30 no

each iteration read only the element
it writes plus an element that is not
written by the loop since it has a
subscript greater than n/2

40 yes

the first iteration read a(n/2+1),
while that last iteration write this
element

Classification

• Loop-carried dependence

• Dataflow dependency:
Dataflow relation between the two dependent statements, i.e., whether
or not the two statements communicate values through the memory
location

S1 – earlier statement, write the memory location
S2 – later statement, read the memory location
The value read by S2 in a serial execution is the same as that written by
S1. In this case, the result of a computation by S1 is communicated, or
‘flows’ to S2, called flow dependence

S1 must execute first to produce the value that is consumed by S2

Generally, it’s hard to remove this dependence

Classification: continue

• Dataflow dependency:
two other kinds of dependences which can be removed; they are not
communication of data between S1 and S2, but reuse of the memory
for different purpose at different points in the program

• anti dependence
S1 read the location
S2 write the location

make a private copy of the location and initializing the copy
belonging to S1

• output dependence
both S1 and S2 write the location

privatizing the memory location and in addition copying the last value
back to the shared copy of the location

A loop containing multiple data dependences

do i = 2, n-1
10 x = d(i) + i
20 a(i) = a(i + 1) + x
30 b(i) = b(i) +b(i - 1) + d(i - 1)
40 c(2) = 2 * i

enddo

outputywi+140wi40c(2)

flowyri+130wi30b(i)

antiywi+120ri20a(i+1)

antiywi+110readi20x

outputywi+110wi10x

flownori20writei10x

Kind of
dataflow

Loop
carried

AccessIteration

later

LineAccessIteration

earlier

LineMemory
location

• removal of anti dependences

Serial version containing anti dependences
! Array is assigned before start of loop

do i = 1, n-1
x = (b(i) + c(i))/2

10 a(i) = a(i+1) +x
enddo

Parallel version with dependences removed

! $omp parallel do shared(a, a2)
do i = 1, n-1

a2(i) = a(i+1) - make a copy of the array
enddo

! $omp parallel do shared(a, a2) private(x)
do i = 1, n-1

x = (b(i) + c(i))/2
10 a(i) = a2(i) +x

enddo

Remove dependences

• removal of output dependences

Serial version containing output dependences

do i = 1, n
x = (b(i) + c(i))/2

a(i) = a(i) +x
d(1) = 2 * x

enddo
y = x + d(1) + d(2)

Parallel version with dependences removed

! $omp parallel do shared(a) lastprivate(x, d1)
do i = 1, n

x = (b(i) + c(i))/2
a(i) = a(i) +x
d1 = 2 * x

enddo
d(1) = d1
y = x + d(1) + d(2)

Remove dependences

• removal of flow dependences caused by a reduction

Serial version containing a flowdependence

x = 0
do i = 1, n

x = x + a(i)
enddo

Parallel version with dependences removed by reduction clause

x = 0
! $omp parallel do reduction(+: x)

do i = 1, n
x = x + a(i)

enddo

Remove dependences

• removal of flow dependences using loop skewing

Serial version containing a flow dependence

do i = 2, n
10 b(i) = b(i) + a(i-1)
20 a(i) = a(i) + c(i)

enddo

Parallel version with dependences removed by reduction clause

b(2) = b(2) + a(1)
! $omp parallel do shared(a, b, c)

do i = 1, n-1
20 a(i) = a(i) + c(i)
10 b(i+1) = b(i+1) + a(i)

enddo
a(n) = a(n) + c(n)

Remove dependences

• parallelization of a loop nest containing a recurrence

Serial version containing a recurrence
do j = 1, n

do i = 1, n
a(i, j) = a(i, j) + a(i, j-1)

enddo
enddo

Parallel version to the loop in the nest

do j = 1, n
!$omp parallel do shared (a)

do i = 1, n
a(i, j) = a(i, j) + a(i, j-1)

enddo
enddo

Dealing with non-removable dependences

• parallelization of part of a loop using fissioning

Serial version containing a recurrence

do i = 1, n
10 a(i, j) = a(i, j) + a(i, j-1)
20 y = y + c(i)

enddo

Parallel version

do i = 1, n
10 a(i, j) = a(i, j) + a(i, j-1)

enddo

!$omp parallel do reduction(+: y)
do i = 1, n

20 y = y + c(i)
enddo

Dealing with non-removable dependences

Deadlock Examples

• If A is locked by one thread and B by another, you have deadlock.
• If both are locked by the same thread, you have a race condition!
• Avoid nesting different locks.

Deadlock Examples

• If A is locked in the first section and the if statement branches
around the unset lock, then threads in the other section will deadlock
waiting for the lock to be released.

• Make sure you release your locks!

OpenMP on SHARCNET

• SHARCNET systems

http://www.sharcnet.ca/Facilities/index.php

2 - Shared memory systems (silky, typhon)

Many Hybrid Distributed-Shared Memory clusters

- clusters with multi-core nodes

• Consequence: all systems allow for SMP- based
parallel programming (i.e., OpenMP) applications

Size of OpenMP Jobs on specific system

1616Alpha SMPtyphon

128128SGI Altix SMPsilky

22Xeonmako

22Itanium2coral, spinner

44Alphagreatwhite

22Opteron

(cat is mixed)

gulper,goblin,
requin, wobbe, cat

44Opteronbala, bruce, bull,
dolphin, narwhal,
megaladon, tiger,
whale, zebra

OMP_NUM_THREADS
(max)

CPU/NodeNodesSystem

OpenMP: compile and run

• Compiler flags:

• Run OpenMP jobs in the threaded queue

Submit OpenMP job on a cluster with 4-cpu nodes
(The size of threaded jobs varies on different systems as
discussed in the previous page)

sqsub –q threaded –n 4 –o hello_openmp.log ./hello_openmp

Intel (icc, ifort) -openmp
Pathscale (cc, c++, f77, f90) -openmp
PGI (pgcc, pgf77, pgf90) -mp

e.g., f90 –openmp –o hello_openmp hello_openmp.f

References

1) Parallel Programming in OpenMP by Rohit Chandra, Morgan Kaufman
Publishers, ISBN 1-55860-671-8

2) OpenMP specifications for C/C++ and Fortran, http://www.openmp.org/
3) http://www.openmp.org/presentations/sc99/sc99_tutorial_files/v3_document.htm
4) http://www.llnl.gov/computing/tutorials/openMP/
5) http://www.nic.uoregon.edu/iwomp2005/iwomp2005_tutorial_openmp_rvdp.pdf
6) http://www.osc.edu/hpc/training/openmp/big/fsld.001.html
7) http://cacs.usc.edu/education/cs596/06OMP.pdf
8) http://www.ualberta.ca/AICT/RESEARCH/Courses/2002/OpenMP/omp-from-

scratch.pdf

