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CHAPTER

ONE

INTRODUCTION

In this course we are going to get you using the R tidyverse. Tidyverse is a collection of opinionated R packages
sharing an underlying design philosophy, grammar, and data structures. They are the results of many years of research,
experimentation, and papers by Hadley Wickham and friends, and give the best experience I have ever had doing Data
Science across any programming language (including numpy, pandas, and friends from python). The contents of
the course is based on, and borrows liberally from, Hadley’s free online book R for Data Science. You are highly
encouraged to check it out too if you want to continue with data science.

1.1 Outline

As described in Haley’s book, this first step in data science proojects is importing the data and cleaning it up. The
details of what this involve are generally specific the data sources, but typical items would involve dealing with
different data formats, missing values, typos and other obvious mistakes that were made during data collection, etc.
After beating your data into a format suitable for working with, you can then began an interative process of coming to
understand it. Generally this is a repatitive process of visualizing, modeling, and further transforming of the data that
gradually aligns your undestanding and the data.

In actualy scientific analysis, it is important to set aside a portion of your data for hypothesis confirmation and not look
at this data when coming to your understanding so you have an independent dataset to verify the hypothesis you form.
The reason for this is that, while the chance of any one given pattern appearing randomly in a dataset are quite low, the
chances of some random pattern appearing in a dataset are quite high. When you are exploring the dataset, you mind
looks for any pattern, and, therefore, the probability of it mistaking something random for a pattern is reasonably high.
When you verify, however, you are only checking for one specific thing, the probability of one specific thing happening
randomly is quite low, and so you can have confidence if it does. You can only do this once though. Sucumming to
the temptation to keep verifying hypothesis until one succeeds foils this as you will just really be looking through all
your data for any pattern and likely mistaking something random for one. Many published results from big data gene
analysis have proven to be incorrect for this reason.

1

https://www.tidyverse.org/
http://hadley.nz/
https://r4ds.had.co.nz/introduction.html


R (tidyverse)

The final step of the process is to come up with a way of using the data to clearly communicate what you have come
to understand to others. At a minimmum this will cleaning and expanding on some of the visualizations you produced
while studying the data yourself. It may also involve coming up with entirely new visualizations.

1.2 Software

In this course, we will be using R. You can either run R directly in a console or (more recommended) the RStudio
environment. You install these on your computer or use the graham VDI machine. R has a large set of add on packages
(including tidyverse). Under Linux, a large selection of these are available pre-build through your computer’s package
manager. We recommend using these if they exist as they are fast to install, installed globally (available to all user
accounts), and less prone to running into issues. Failing that, you can also have R download and build and package for
the local user using the install.packages command.

1.2.1 Personal Windows or Mac OS X

If you want to install it on your computer and are running Windows or Mac OS X, you can download and install

• R from the Comprehensive R Archive Network (CRAN) site: https://cran.r-project.org/

• RStudio from the from the RStudio site: https://www.rstudio.com/products/rstudio/download/

Once you have installed RStudio, you can start it up and then have R build you the latest tidyverse package from
CRAN (this will take quite awhile)

> install.packages('tidyverse')

1.2.2 Personal Linux

The RCRAN page above also includes instructions on how to install R for the various common Linux distributions.
Most Linux distribution come with a large number of R packages pre-packaged. (i.e., installable via apt-get
or dnf). You should prefer using these over installing them via the R install.packages command as they
generally have less issues (the system package manager will also install any other required system dependencies) and
get installed globally (instead of just for the current user).

Debian or Ubuntu

For Debian or or Ubuntu you will want to do something like the following (the RStudio link in the following may
require updating depending on what is now current and the particular version and number of bits of your Ubuntu
Debian installation)

[tyson@tux ~]$ sudo apt-get install r-base r-base-dev r-cran-tidyverse
[tyson@tux ~]$ wget -d https://download1.rstudio.org/desktop/bionic/amd64/rstudio-1.4.
→˓1717-amd64.deb
[tyson@tux ~]$ sudo dpkg -i rstudio-1.4.1717-amd64.deb

which installs the system R, the system tidyverse, and a non-system RStudio package downloaded from the RStudio
website (Debian and Ubuntu don’t provide RStudio).

2 Chapter 1. Introduction
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Fedora

For Fedora you will want to do something like

[tyson@tux ~]$ sudo dnf install rstudio-desktop

which installs the system R and the system RStudio. Unfortunately Fedora doesn’t currently package the top-level R
tidyverse package, so you have to get R to build and install it

[tyson@tux ~]$ R -e "install.packages('tidyverse',repos='https://utstat.toronto.edu/
→˓cran/')"

or be satisifed with a system installation of each of the components (this just means you will have to import each
components separtely instead of altogether with one library(tidyverse) command in R)

[tyson@tux ~]$ sudo dnf install R-ggplot2 R-tibble R-tidyr R-readr R-purrr R-dplyr R-
→˓stringr R-forcats

1.2.3 Graham VDI

If you want, you can also use R and RStudio remotely on graham’s virtual desktop interface (VDI) machines. This
is especially useful when analyzing data that is already on/being generated on the graham cluster. To access these
machines, you need to install and setup the TigerVNC client on your computer as documented on our VNC page on
our Compute Canada documentation wiki. A sort summary is that you install the TigerVNC viewer as appropriate for
your machine

• Windows: install the latest vncviewer executable (exe) from https://sourceforge.net/projects/tigervnc/files/stable

• Mac OS X: install the latest TigerVNC dmg from https://sourceforge.net/projects/tigervnc/files/stable

• Debian/Ubuntu: run sudo apt-get install tigervnc-viewer

• Fedora: run sudo dnf install tigervnc

start it up, enter gra-vdi.computecanada.ca, and pick press the Connect button (if you get a certificate
verification error, see the website for directions on setting up your certificate paths to fix this).

Once logged in with your Compute Canada username and password, you can get a terminal by click the black screen
icon on the bar at the top of the screen. From the terminal you will have access to all your files and the same software
stack as on graham (note that the CcEnv and StdEnv modules are not loaded by default as on graham).

1.2. Software 3
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An easy way to setup R and RStudio environments on gra-vdi is to use the Nix software building and composition
system. Following the R section of the Using Nix page on our Compute Canada docuumentation wiki, we create an
RStudio.nix file in our project directory with a list of the R packages we want to use (this command does not
create the file, it just shows its contents, use an editor like nano to create it).

[tyson@gra-vdi3 ~]$ cat RStudio.nix
with import <nixpkgs> { };
rstudioWrapper.override {

packages = with rPackages; [
tidyverse

];
}

Then we load the nix module and run the nix run command on the file. This nests a new shell session in our
existing one (type exit to end it) with the PATH environment variable expanded to include the rstudio wrapper,
which enables us to directly launch RStudio.

[tyson@gra-vdi3 ~]$ module load nix
[tyson@gra-vdi3 ~]$ nix run -f RStudio.nix
[tyson@gra-vdi3 ~]$ rstudio

Nix packages most R packages, and, for the same reasons as discussed above, these should be preferred over manually
installing and building packages with the R install.packages command. To change the package set, update
the packages = with rPackages; [ ... ] lines in the RStudio.nix file, exit the existing nix run
session, start a new one with the new package set, and restart RStudio

[tyson@gra-vdi3 ~]$ nano RStudio.nix
[tyson@gra-vdi3 ~]$ exit
[tyson@gra-vdi3 ~]$ nix run -f RStudio.nix
[tyson@gra-vdi3 ~]$ rstudio

As detailed on the Using Nix page, the nix run command only builds gives a temporary environment guarnateed to
last for a day. For longer term environments, use the nix build or the nix-env commands as also documented
on the Using Nix page. The former gives a per-project solution by creating a direct link in your project directory to the
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R/RStudio wrappers. The later gives a per-user solution by adding it to your path anytime the Nix module is loaded.

1.3 Website

The tidyverse website tidyverse.org contains documentation, examples, and quick reference cards for each of the
tidyverse packages. You are highly encouraged to reference it, especially the quick reference cards, but be aware that
the front page does not show the forcats and stringr package links on limited screen widths, and the packages
menu item has to be used to get to these.

1.3. Website 5
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CHAPTER

TWO

VISUAL EXPLORATION

The first tidyverse packages we are going to use are the tibble and ggplot2 ones.

• tibble - data tables (a reimaging of the classic R data.frame)

• ggplot2 - plots (second implementation of Haley’s layered grammar of graphics)

Both of these are automatically loaded when we load the tidyverse library

> library(tidyverse)

In this section we will be focusing on ggplot2. This implements Hadley’s layered grammar of graphics (which builds
on Wilkinson’s original grammar of graphics) to allow a very simple and concisely expression of any type of plot.

2.1 Creating a Plot

Our data is tibble (tidyverse table/data-frame) containing a subset of the fuel economy data the US Environmental
Protection Agency (EPA) provides on cars from 1999 and 2008 (run ?mpg for more details on the data set).

> mpg
# A tibble: 234 x 11

manufacturer model displ year cyl trans drv cty hwy fl class
<chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>

1 audi a4 1.8 1999 4 auto(l5) f 18 29 p
→˓compact
2 audi a4 1.8 1999 4 manual(m5) f 21 29 p
→˓compact
3 audi a4 2 2008 4 manual(m6) f 20 31 p
→˓compact
4 audi a4 2 2008 4 auto(av) f 21 30 p
→˓compact
# ... with 230 more rows

You probably already have some assumptions about relationships that may exist in this data, such as, the bigger the
engine displacement (displ) the few miles-per-gallon (mpg) it will get on the highway (hwy). We can quickly verify
this be creating a ggplot.

> ggplot(data=mpg) +
geom_point(mapping = aes(x=displ, y=hwy))
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Interestingly, while things look largely like we might expect, there does appear to be some large-engines outliers that
still manage to achieve middle-of-the-road fuel economy.

The ggplot() command creates a coordinate system and set defaults. In this case we have specified our default data
source is the mpg tibble. We then add a points geometry layer on top of this. For this layer we specify the mappings
from the information in the data set (defaulted to mpg) we wish to convey to to the visual properties that of the points
that is going to convey that information (their aesthetics)

• the displ value will be conveyed by the x coordinate of the point and

• the hwy value will be conveyed by the y coordinate of the point.

Two other entirely equivalent ways to generate this graph are

> ggplot(data=mpg, mapping = aes(x=displ, y=hwy)) +
geom_point()

> ggplot() +
geom_point(data=mpg, mapping = aes(x=displ, y=hwy))

The first one provides all the geom_point specifications as defaults via ggplot and the second provides none. In
generally though you will mostly see the original form as most graphs are generated primarily from one data set (so it
makes sense to make it a default) and aesthetics are generally layer specific.

The complete plot specification we will be covering in the next subsections are

> ggplot(data = <DATA>) +
<GEOM_FUNCTION>(

mapping = aes(<MAPPINGS>),
stat = <STAT>,

(continues on next page)
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(continued from previous page)

position = <POSITION>
) + ... +
<COORDINATE_FUNCTION> +
<FACET_FUNCTION> +
<SCALE_FUNCTION> + ... +
<GUIDE_FUNCTION> + ... +
<THEME_FUNCTION> + ...

• DATA underlying data set providing the observations

• STAT statistical transformation (stat) of the information to be displayed

• GEOM_FUNCTION geometric object (geom) to represent information

• MAPPINGS how values to be display map to the levels of an aesthetic

• COORDINATE_FUNCTION coordinate system to place the geom into

• POSITION position adjustments in the coordinate system

• FACET_FUNCTION split the plot into subplots

• SCALE_FUNCTION how data values are translated to visual properties

• GUIDE_FUNCTION help readers interpret the plot

• THEME_FUNCTION controls the display of non-date items

2.2 Aesthetic Mappings

We have already been introduced to the (mandatory) x and y aesthetics of the point geom. If we run ?geom_point
to check the documentation, we will find that points actually have an five more independent aesthetics we can use to
encode our data. One of these is colour (or color if you prefer the US spelling). Let’s use this to encode the class
of the cars in our data set to see what that may reveal.

> ggplot(data=mpg) +
geom_point(mapping = aes(x=displ, y=hwy, colour=class))

2.2. Aesthetic Mappings 9
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It seems our large-engine outliers are actually sports cars, which makes sense. We certainly would expect them to have
much better fuel economy than the SUVs and pickup trucks with similar sized engines below them.

Our aesthetic mapping is not limited to just aesthetic equals variable, but rather it can be any R expression involving
the variables. We can also set the default values used for non-mapped aesthetics by assigning them values outside of
aes. For example, let us decrease the point size for fun, and plot gallons-per-100-miles instead of miles-per-gallon as
miles-per-gallon makes bad fuel economy less evident (e.g., going from 10 to 15 mpg looks to be the same as going
from 25 to 30 mpg, even though the former is a fuel savings of 33% while the later is only 17%).

> ggplot(data=mpg) +
geom_point(mapping = aes(x=displ, y=100/hwy, colour=class), size=0.75)

10 Chapter 2. Visual Exploration
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2.2.1 Exercises

From the mpg data set help page (?mpg), there are several other variables that we might expect to be related to
fuel consumption. This includes the transmission (number of gears and automatic/standard), the drivetrain (front-
wheel/rear-wheel/four-wheel), the number of cylinders, and the fuel type.

1. Choose additional geom_point aesthetics (?geom_point) to map these variables too as well and see if
there are any obvious patterns.

2. Some aesthetics, like position or size, are continuous, while others, like shape, are discrete. What makes an mpg
variables continuous or discrete. What does ggplot handle discrete/continuous mismatches between aesthetics
and variables?

2.3 Faceting

While mapping variables to aesthetics is useful for helping understand more about our data, it can become overwhelm-
ing and hard to tell what is going on (is front wheel drive more fuel efficient, or are just most small cars are front wheel
drive?). It is often helpful to compare a common graph (on a common scale) plotted across different subsets of our
data in order to reveal patterns. This is called faceting. It is done by adding a facet_wrap (1D) or facet_grid
(2D) to our plot.

For example, we can compare our standard fuel economy plot across the different manufactures to get an idea if
American manufactures deserve their large gas guzzlers reputation.

2.3. Faceting 11
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> ggplot(data=mpg) +
geom_point(mapping = aes(x=displ, y=100/hwy, colour=class), size=0.5) +
facet_wrap(facets = vars(manufacturer))

Here we have used the newer vars syntax to specify what variables to facet on. You will also frequently see
the older formula syntax that would look like facets = . ~ manufacture (this is a one-sided formula be-
cause facet_wrap is 1D). For the grid variant, you pass both a rows = vars(...) and cols = vars(.
..) specification or a single rows = ... ~ ... using the older formula syntax (a two sided formula because
facet_grid is 2D).

2.3.1 Exercises

1. What happens if you specify multiple variables inside of vars (say class and drv)? How is this expressed
using the formula syntax?

2. Use facet_grid to facet on both drv and class. What does this tell us about fuel consumption for the
different classes? What happens if class is also used for a colour aesthetic at the same time?

3. Fill in the following template to create the following faceted plot. What do the "free" parameters do (try
removing them and see what happens to the plot).

> ggplot(data=mpg) +
geom_point(mapping = aes(x=..., y=...)) +
facet_grid(rows = vars(...), scales="free", space="free")

12 Chapter 2. Visual Exploration
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2.4 Geometric Objects

So far we have been representing our data with a point geom. This is just one of the many geoms (there are over 40 of
them!) we can choose from when creating plots, and we can add as many as we want in each plot. For example, we
can add a geom_smooth to show the smoothed conditional in our relations along with its 95% confidence interval
(the more points there are, and the closer they are together, the more confident we are in our means calculation).

> ggplot(data=mpg) +
geom_smooth(mapping = aes(x=displ, y=100/hwy)) +
geom_point(mapping = aes(x=displ, y=100/hwy, colour=class))

2.4. Geometric Objects 13
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In this case we can also avoid some duplicate aes definitions by putting the common ones in the initial ggplot call
to make them the defaults.

> ggplot(data=mpg, mapping = aes(x=displ, y=100/hwy)) +
geom_smooth() +
geom_point(mapping = aes(colour=class))

Generally, when creating a plot, it is easiest to go to the ggplot2 reference page on the tidyverse website and scroll
down through the 40+ geometric objects (geoms) available until we find what we are looking for. Clicking on it brings
up a detailed page including many example ggplot calls and their output.

14 Chapter 2. Visual Exploration
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2.4.1 Exercises

1. What geom would you use to draw a line chart? A histogram? To put arbirary text labels on your plot?

2. What happens when we add the group=class mapping to geom_smooth? How does this compare to
adding the colour=class mapping?

2.5 Statistical Transformations

Data in ggplot actually goes through a series of transformations on its way to be plotted. This includes a specified
statistical transformation and a final scale transformation. Values can be pulled from either of these stages in our
aesthetics mapping by using the after_stat and after_scale wrappers. The default stat for geom_point
is identity (do nothing) because it is used to plot raw values. The default stat for geom_smooth is smooth
because it plots the smoothed average and its estimated standard error.

Another example of a geom that has a non-identity default stat is geom_bar. It is stat=count, and it counts
the number of observations for each unique group (which is, by default, the interaction of all discrete variables as
implied by the aesthetics mapping). This lets us easily do things like generate stacked bar charts giving the number of
vehicles for each class and drivetrain type

> ggplot(data=mpg) +
geom_bar(mapping = aes(x=class, fill=drv), colour="black")

2.5. Statistical Transformations 15
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When we add a geom layer, we are being explicitly stating our geom and implicitly about our stat. An alternative is to
add a stat layer, which is explicit about our stat and implicit about our geom. The equivalent stat layer to geom_bar
is stat_count. Its default geom is bar. This means either of these give us a bar geom with a count stat. The
above plot is equally well specified as

> ggplot(data=mpg) +
stat_count(mapping = aes(x=class, fill=drv), colour="black")

As mentioned earlier, the height of the bar (its y aesthetic) is implicitly coming from the count stat transform, and
we can also be explicitly about this mapping by using the after_stat wrapper in our aes. An example of where
we might want to do this is to normalize the counts to the unit interval.

> ggplot(data=mpg) +
geom_bar(mapping = aes(x=class, y=after_stat(count/sum(count)), fill=drv), colour=

→˓"black")

2.5.1 Exercises

1. Adding stat_summary gives the a summary value along with a min and max bound (defaulting to the
mean and its standard error). What would the equivalent geom_* layer be (start with the help page for
stat_summary)?

> ggplot(data=mpg, mapping = aes(x=class, y=100/hwy)) +
geom_point() + stat_summary(colour="red")

16 Chapter 2. Visual Exploration
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2. Provide appropriate fun, fun.min, and fun.max parameters to change the above to showing the median and
25% and 75% quantiles?

2.6 Position Adjustments

An interesting thing revealed in explicitly specifying the y aesthetic is that geom_bar (or stat_count) doesn’t
actually put the individual bars at the specified position. Rather, it offsets the individual bars for each driveline type
upwards so they stack on top of each other to give a stacked bar chart.

This is due to a position adjustment specification which tweaks the layout to achieve various desired effects. As with
stats, the various geoms have different default position adjustments. For geom_bar it is position="stack"
(equivalently position=position_stack()). We can override this though with a variety of specifications (see
?geom_bar) include dodge, which places the bars side-by-side.

> ggplot(data=mpg) +
geom_bar(mapping = aes(x=class, y=after_stat(count/sum(count)), fill=drv),

→˓position="dodge", colour="black")

As with the stat, the geom_point default is position="identity" (do nothing). A useful override for scatter
plots is position="jitter". This perturbs the final positions by a small random amount which, while making
the final plot slightly less accurate on a local scale, reveals more large scale detail by avoiding overlapping points.
Here we plot this over top of the original scatter plot for reference

> ggplot(data=mpg) +
geom_point(mapping = aes(x=displ, y=100/hwy, colour=class), position="jitter",

→˓alpha=0.75)

2.6. Position Adjustments 17
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2.6.1 Exercises

1. How does geom_jitter and geom_count compare to using position="jitter" with geom_point
as above?

2. How would you control the amount of jitter added to the positions?

2.7 Coordinate Systems

While one of the most complex part of ggplot2 is the coordinate system, the layered grammar of graphics makes it
very easy to use. If we want to override the default Cartesian coordinate system, we just add in a coordinate system
layer. There are a number commonly used ones, including

• coord_fixed - Cartesian coordinates with a fixed aspect ratio

• coord_flip - Cartesian coordinates with a x and y flipped

• coord_map - map projections

• coord_polar - polar coordinates

Bar charts in polar coordinates make a variety of interesting looking pie-style charts (these should be avoided due to
the numerous interpretation issues inherent in pie-style charts as an internet search will reveal).

18 Chapter 2. Visual Exploration
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> ggplot(data=mpg) +
geom_bar(mapping = aes(x=class, fill=drv), width=1, colour="black") +
coord_polar()

2.7.1 Exercises

1. Compare using coord_flip to specifying a y aesthetic mapping instead of an x one for the bar chart.

2. Create a pie chart of the number of vehicles of each class. You will need a mapping that gives a constant radius
and incrementing (stacked) angles to your polar coordinates.

2.8 Scales and Labels

Each aesthetic is associated with a single shared scale that maps the input range to the output range. Examples we
have already seen of this include the coordinate mapping for the x and y aesthetics and the colour mapping for the
colour and fill aesthetics. A default is chosen for each aesthetic based on the aesthetics mappings we provide.
Adding a scale function allows us to take custom control of this.

The default discrete colour and fill scales use equally spaced hue values. This isn’t ideal as hue isn’t colour blind
friendly (1 in every 12 people have some form of colour blindness), nor does it photocopy well. A better choice, for a
discrete data set, would be to use the qualitative scheme from ColorBrewer.

2.8. Scales and Labels 19
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> ggplot(data=mpg) +
geom_point(mapping = aes(x=displ, y=100/hwy, colour=class), position="jitter") +
scale_colour_brewer(type="qual")

Another common coordinate scale change to make is linear to logarithmic. This converts constant multiples to constant
increments, making relative comparisons natural, and is a good choice to expand out small values and compress large
ones. Earlier we switched from miles-per-gallon to gallons-per-mile as the former was visually compressing the bad-
fuel-economy range. Another option would have been to use a log scale.

> ggplot(data=mpg) +
geom_point(mapping = aes(x=displ, y=hwy, colour=class), position="jitter") +
scale_colour_brewer(type="qual") +
scale_y_log10()

20 Chapter 2. Visual Exploration
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The scale legends are provided by guides. These inherit a lot of their details from the scale specifications, but it is
also possible to explicitly configure them on either a global of per-scale/aesthetic level. The former is done by adding
a guide_* to the plot with the desired parameters. The later is done by specifying a guide=... argument in a
scale_* call or a guide aesthetic map to our plot. As an example of the last of these, the class colour legend is
trivially hid by specifying the guide mapping colour="none" (equivalently colour=guide_none()).

ggplot(data=mpg) +
geom_point(mapping = aes(x=displ, y=100/hwy, colour=class), position="jitter") +
scale_colour_brewer(type="qual") +
guides(colour="none")
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Details of labels and limits of scales can also be adjusted by providing appropriate options to scale_* and guide_*.
These operations are so common though that the convenience functions labs (further ggtitle, xlab, and ylab)
and lims (further xlim, ylim, and various expansion routines) have been provided.

> ggplot(data=mpg) +
geom_point(mapping = aes(x=displ, y=100/hwy, colour=class), position="jitter") +
scale_colour_brewer(type="qual", labels=c("Two-seater","Compact","Midsize",

"Minivan","Pickup","Subcompact","SUV"))
→˓+

labs(title="Subset of EPA Fuel Economy Data (1999 and 2008)", subtitle="mpg data
→˓set",

x="Engine Displacement", y="Gallons per 100-Miles", colour="Vehicle Class")
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The above specification of the legends labels is fragile as changing the data can result in the plot labels becoming
mismatched. A minimum solution is to also specify limits=("2seater","compact",...) (this is defaulting
to all values in alphabetical order) so both parts are explicit and together. A better solution would be to use the tidyverse
forcats package to correct and order the data labels in the data itself.

2.8.1 Exercises

1. Use ggtitle, xlab, and ylab to specify the title and axis labels instead of labs.

2. Use the limit functions to ensure 0 is included in the gallons-per-100-miles axis. Would it be best to do this with
lims, ylim, or expand_limits?

3. Override the guide in the following plot so cylinder numbers are shown discretely instead of continuously.

> ggplot(data=mpg) +
geom_point(mapping = aes(x=displ, y=100/hwy, colour=cyl), position="jitter")
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2.9 Themes

Themes control the display of all non-data elements of plots. There are several complete themes to choose from, as
well as a system of inheritance that makes it possible to specify styling at many levels. For example, axis.title.
x.top inherits from axis.title.x, which inherits from axis.title, which inherits from title making it
possible to easily specify very general or specific tweaks.

As an example, we can use the minimal theme to entirely change the look of our plot while also moving the legend
into the open space in the upper-right corner to recover the area on the far right for plotting.

> ggplot(data=mpg) +
geom_point(mapping = aes(x=displ, y=100/hwy, colour=class), position="jitter") +
scale_colour_brewer(type="qual", labels=c("Two-seater","Compact","Midsize",

"Minivan","Pickup","Subcompact","SUV"))
→˓+

labs(title="Subset of EPA Fuel Economy Data (1999 and 2008)", subtitle="mpg data
→˓set",

x="Engine Displacement", y="Gallons per 100-Miles", colour="Vehicle Class") +
theme_minimal() +
theme(legend.justification=c("left","top"), legend.position=c(0.025,0.925))
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2.9.1 Exercises

1. Make all text in the above plot approximately 25% as smaller. Decrease only the legend text by approximately
25%. Why is it a good idea to use rel when specifying text sizes?

2. In an earlier exercise we created the following plot. Change the orientation of the manufacteur facets on the far
right to horizontal from vertical so they are not cut off.

> ggplot(data=mpg) +
geom_point(mapping = aes(x=100/hwy, y=model)) +
facet_grid(rows = vars(manufacturer), scales="free", space="free")
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CHAPTER

THREE

DATA WRANGLING

Unfortunaetly there will not be time in this course to explore data wrangling with the remaining tidyverse packages.
Rest assured they are as amazing for data manipulation as the ggplot2 is for plotting. You are highly encouraged to
read the data transformation chapter in Hadley’s book for an overview and the wrangle chapters for the details.
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CHAPTER

FOUR

SEARCH

• search
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