
C++ Internals
Tighter Code Through Understanding

Tyson Whitehead

SHARCNET
The University of Western Ontario

June 1, 2009

Tyson Whitehead C++ Internals



Name Mangling

The compiler accomplishes various things through the use of name
mangling. That is, it adds stuff into the name of your functions
behind your back in order to distinguish them. This is mostly
useful.

Caveat Emptor

What about compilers that use different encoding schemes?

Tyson Whitehead C++ Internals



Name Mangling — Function Overloading

The compiler encodes into your function names is the functions
arguments. This adds the ability to create functions of the
apparent same name with different arguments.

Caveat Emptor

What about ambiguous situations?

Tyson Whitehead C++ Internals



Name Mangling — Namespaces

The compiler encodes an optional namespace into function and
structure/class names. This avoid name collisions between
modules and is quite useful.

Tyson Whitehead C++ Internals



Name Mangling — External Functions

In order to use a function compiled without name mangling (e.g., a
C function), the compiler has to be told to disable name mangling
for the function.

Tyson Whitehead C++ Internals



Classes and Structures

It is convenient to group data structures together with the
functions that operate on them in one place. This is useful and
greatly increases maintainability. It is also nice to have some
syntactic sugar to extend structures and handle function tables.

Caveat Emptor

Claimed benefits beyond this are largely overrated.

Tyson Whitehead C++ Internals



Classes and Structures — Operator Overloading

The compiler converts operator expressions into series of functions
calls to functions named operator+, operator−, etc. Overloading
these functions makes it possible add support for new
structures/classes.

Caveat Emptor

Operator overloading frequently leads to very poor performing
code due to having to generating a lot of temporaries.

Tyson Whitehead C++ Internals



Classes and Structures — Inheritance

Structures/classes can be extended by deriving further classes.
Internally, the compiler creates a new structure/class with the first
members being the structures/classes being derived from.

Tyson Whitehead C++ Internals



Classes and Structures — Inheritance — Virtual Functions

Virtual functions allow functions in base structures/classes to be
overridden. This is done by creating tables of function pointers for
the various combinations of virtual functions and creating a pointer
in the underlying data structure to point to the appropriate table.
Virtual functions calls are then routed through the table.

Caveat Emptors

The indirections adds a performance hit (and restricts
inlining).

The functions which can be overridden have to all be specified
ahead of time (invariably the one you want is not).

The compiler cannot assume it knows everything about the
function (an exception handling performance hit).

Non-virtual destructors can (will) lead to grief.

Tyson Whitehead C++ Internals



Classes and Structures — Inheritance — Virtual Bases

Making derived classes by just making the first members of the
underlying data structure the structures/classes they are derived
from results in multiple copies of any structure/class that occurs
multiple times in object hierarchy. Making a base classes virtual
forces all accesses to go through a pointer. Multiple copies then
becomes multiple pointer. This solves the problem as the latter
can all be made to point to a single copy of the underlying data.

Caveat Emptors

The indirection adds a performance hit.

The bases which might occur multiple times are all specified
ahead of time (invariably the one you want is not).

Tyson Whitehead C++ Internals



Exceptions

The compiler maintains a stack of handlers associated with various
stack frames to jump to when an error is raised. Local
classes/structures are automatically wrapped in try catch blocks in
order to ensure their proper destruction.

Caveat Emptors

Maintaining information necessary to handle exceptions adds
a lot of overhead, and, unless the compiler knows for sure that
no exceptions will happen, it has to add this overhead in.

A function call cannot be guaranteed to throw no exceptions
unless the programmer says so or the actual function is known
(i.e., not a virtual function), throws no exceptions, and only
calls functions that are known to not throw any exceptions.

Only local objects are automatically cleaned up.

Tyson Whitehead C++ Internals



Templates

Templates are pure compile-time features (i.e., no runtime
overhead).

Caveat Emptors

Template code that is not being used does not generate
compiler errors and warnings like unused regular code does.

Templates only form a meta-programming language by
accident.

A single template mistake can cascade into thousands of
undecipherable error messages.

Tyson Whitehead C++ Internals


