
Core Loops in Native Code
Octave

Tyson Whitehead

SHARCNET
The University of Western Ontario

June 5, 2009

Tyson Whitehead Interfacing Octave with Native Code



Introduction

Interpreted languages such as Octave are only efficient if the
majority of a programs time is spent inside built-in functions.

This requires the core loop of the program to map well onto
matrix primitives (e.g., solving a system of equations).

Performance will be a problem if the core loop has to be
iterate through individual matrix/vector entries.

Efficiency can be recovered in these cases by rewriting the
core loop in C/C++ and calling it from Octave.

Octave Manual (Appendix A: Dynamically Linked Functions)

http://www.gnu.org/software/octave/doc/interpreter

Tyson Whitehead Interfacing Octave with Native Code

http://www.gnu.org/software/octave/doc/interpreter


Compiling for Octave

Compiling (Appendix A.1.1)

Give the cpp file the same base name as the function.

Compile the cpp file with the mkoctfile command (a wrapper
around the C++ compiler).

C++ compiler flags will be passed through.

Example

$ mkoctfile helloworld cpp.cpp
$

Tyson Whitehead Interfacing Octave with Native Code

http://www.gnu.org/software/octave/doc/interpreter/Getting-Started-with-Oct_002dFiles.html


Octave Types Overview (1/2)

Octave uses to C++ type system to present various interfaces to a
chunk of underlying memory. The classes derived from the
underlying Array type to provide specific interpretations include

Cell — array of octave value pointers

∗RowVector/∗ColVector — row/column vector

∗Matrix — matrix

∗NDArray — a multidimensional array

where * is {bool,ch,int,f,,fC,C,{int,uint}{8,16,32,64}} (not all of
these are supported by all variants).

Special Types/Representations

The dim vector, ∗DiagMatrix, ∗Sparse, and PermMatrix types have
their own special representation for efficiency. Most of this is
opaque unless the underlying memory is accessed directly.

Tyson Whitehead Interfacing Octave with Native Code



Octave Types Overview (2/2)

Type are passed around wrapped in an introspective hierarchy
accessed through octave value/octave value list (the former being
a list of the latter). Features include

is ∗ — various type test

∗ value — convert to specific type

save ∗/load ∗ — save/load to/from various formats

Various other special classes existing for encapsulating/interfacing
with various algorithms/operations (e.g., decomposition).

Call Throughs

Wrappers for most of the general functions on the specific types
are provided so they can also be called on octave value.

Tyson Whitehead Interfacing Octave with Native Code



Array Types

The basic array types include ∗RowVector/∗ColVector, ∗Matrix,
and ∗NDArray. They are mostly identical apart from the
availability of specific math operations (e.g., matrix inversion).

Underlying memory is in column-major order (i.e., the left
most index address adjacent values as in Fortran), and is
accessed via the data or fortran vec functions.

Dimensioning is a dim vector and can be manipulated/queried
by various functions including ndims, dims, and resize.

Elements accessed via () (either of the next two depending on
whether BOUNDS CHECKING is defined), checkelem (check
indices and unique), elem (check unique), or xelem.

Most math functions and operators overloaded to work;
various is ∗, any ∗, and all ∗ tests are available; and map and
fast map can be used.

Tyson Whitehead Interfacing Octave with Native Code



Gotchas

Use OCTAVE QUIT to check for CTRL+C.

Octave indexes from one, C++ indexes from zero.

Octave arrays are in column-major order, C++ arrays are
row-major-order.

Tyson Whitehead Interfacing Octave with Native Code


