
ComputeCanada
Ontario Summer
School on HPC
-‐ LINUX/SHELL programming

Isaac Ye
HPTC @York University

Linux/SHELL programming

Overview

2

2015 Ontario Summer School on High Performance Computing

Session I 
(LINUX)

1)What/Why/Which LINUX ?
2)LINUX Basic

1)User login/logout
2)SHELL
3)File system
4)Process/Job
5)Text editing
6)Command

2015 Ontario Summer School on High Performance Computing

What/Why/Which LINUX ?

3

Linux/SHELL programming

What is LINUX?
• History

– A famous professor Andrew
Tanenbaum developed Minix, a
simplified version of UNIX that
runs on PC

– In Sept 1991, Linus Torvalds
developed the preliminary
kernel of Linux, known as
Linux version 0.0.1

– Recent (2015) estimates about
80M users in the world.

– 95% of Top500
supercomputers running on
Linux

4

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

Operating System popularity

5

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

GNU project
– Established in 1984 by Richard Stallman, who

believes that software should be free from restrictions
against copying or modification in order to make
better and efficient computer programs

6

2015 Ontario Summer School on High Performance Computing

GNU is a recursive acronym for “GNU's Not Unix”
Aim at developing a complete Unix-like operating system
which is free for copying and modification
Companies make their money by maintaining and distributing
the software, e.g. optimally packaging the software with
different tools (Redhat, Slackware, Mandrake, SuSE, etc)
Stallman built the first free GNU C Compiler in 1991.

Linux/SHELL programming

Why Linux?
• A fully-networked 32/64-Bit Unix-like OS

• Excellent system stability

• Unix tools and compilers

• Strong network tools and support

• Multi-user, Multitasking, Multiprocessor

• Has the network-based X Windows GUI

• Runs on multiple platforms(hardware)

• Plentiful software

• Includes the source code and documents

• FREE !!!

7

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

Which Linux
• Distributions

– Red Hat Linux : One of the original Linux distribution.

• The commercial, nonfree version: Red Hat Enterprise Linux, Free:

Fedora Project.

– Debian GNU/Linux : A free software distribution.

• Popular for use on servers.

• Hard for a beginner.

– Ubuntu Linux: an immensely popular Debian-based distribution.

• If you want to get up and running quickly and not fiddle around with the

guts of the system as much, Ubuntu is better suited.

– CentOS: an Enterprise-class Linux Distribution derived from sources freely

provided to the public. (SHARCNET uses)

– SuSE Linux : primarily available for pay because it contains many

commercial programs, although there's a stripped-down free version that
you can download.

– Mandrake Linux : Mandrake is perhaps strongest on the desktop.

– Gentoo Linux : Gentoo is a specialty distribution meant for programmers.

8

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

LINUX distribution popularity

9

2015 Ontario Summer School on High Performance Computing

2015 Ontario Summer School on High Performance Computing

LINUX Basic

10

Linux/SHELL programming

Logging In/Out in Desktop

11

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

Linux Desktop Environment @SHARCNET

12

2015 Ontario Summer School on High Performance Computing

Click Here!

https://www.sharcnet.ca/my/systems

Linux/SHELL programming

Login credentials

13

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

Desktop snapshot

14

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

Open ‘Terminal’ for command line

15

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

Logging In/Out using SSH

16

2015 Ontario Summer School on High Performance Computing

Connect to the server (SSH only in SHARCNET)

Exit from the server (Don’t forget !) 

[isaac@cfdpc8 isaac]$ ssh isaac@saw.sharcnet.ca
isaac@saw.sharcnet.ca's password:
Last login: Tue May 25 11:36:11 2010 from bas9-toronto12-1128700169.dsl.bell.ca

Welcome to Saw, a SHARCNET cluster.
Please see the following URL for status of this and other clusters:
https://www.sharcnet.ca/my/systems

ALL Sharcnet users must now also have a Compute Canada account. Please
visit http://ccdb.sharcnet.ca for instructions.

[isaac@saw377 ~]$

Welcome message

Last login info

[isaac@saw377 ~]$ exit
logout

Command prompt

Linux/SHELL programming

The Command Prompt
• Commands are the way to “do things” in Unix
• A command consists of a command name and options

called “flags”
• Commands are typed at the command prompt
• In Unix, everything (including commands) is case-

sensitive

17

2015 Ontario Summer School on High Performance Computing

[prompt]$ <command> <flags> <args>

[isaac@saw377 ~]$ ls –l –a my_project

Command Prompt
Command

(Optional) flags

(Optional) arguments

Note: In LINUX, you’re expected to know what you’re doing. Many
 commands will print a message only if something went wrong.

Linux/SHELL programming

Two Basic Commands for Help
• The most useful commands you’ll ever learn:

– man 	(short for “manual”)

– info

• They help you find information about other commands

– man <cmd> or info <cmd> retrieves detailed information

about <cmd>

– man –k <keyword> searches the man page summaries

(faster, and will probably give better results)
– man –K <keyword> searches the full text of the man

pages

• command --help

18

2015 Ontario Summer School on High Performance Computing

[isaac@saw377 ~]$ ls --help
Usage: ls [OPTION]... [FILE]...
List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuvSUX nor –sort…

Linux/SHELL programming

Exercise #1

1.Getting into LINUX system (Website/SSH)

2.Check your id ‘whoami’

3.Check your files ‘ls’, ‘ls -l’, ‘ls -lrt’

4.Get help on ls ‘man ls’, ‘ls --help’

5.Find out who else is on the system ‘w’

6.What is your current directory ‘pwd’

19

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

Linux System

20

2015 Ontario Summer School on High Performance Computing

Hardware

Kernel
Device
Drivers

File systems

Shell

Linux
command

Linux/SHELL programming

SHELL
• An interface between the Linux system and the user

• Used to call commands and programs

• An interpreter

• Powerful programming language

• Many available (bsh; ksh; csh; bash; tcsh)

– How to check your shell ?

	

– ‘bash’ is in default on SHARCNET machines

21

2015 Ontario Summer School on High Performance Computing

[isaac@saw377 ~]$ echo $SHELL
/bin/bash

http://linux.com.hk/man/showman.cgi?manpath=/man/man1/bash.1.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man1/tcsh.1.inc

Linux/SHELL programming

Linux File System Basics
• Linux files are

stored in a single
rooted,
hierarchical file
system
– Data files are

stored in
directories
(folders)

– Directories may
be nested as
deep as needed

22

2015 Ontario Summer School on High Performance Computing

/

etc homeusr

passwd inittab

isaac alex dave

a b

Directories

User home
directories

Data files

root

work scratch

Linux/SHELL programming

Some Special File Names
• Some file names are special:

– / The root directory (not to be confused with the
root user)

– . The current directory

– .. The parent (previous) directory

– ~ My home directory

• Examples:

– ./a same as a

– ../isaac/x go up one level then look in directory
isaac for x

23

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

Command for Directories
• ls

– LiSts the contents of the specified directories (or the current
directory if no files are specified)

– Syntax: ls [<file> …]

– Example: ls backups

• pwd
– shows the present directory info

– Print Working Directory

• cd
– Change Directory (or your home directory if unspecified)

– Syntax: cd <directory>

– Examples:

• cd backups/unix-tutorial

• cd ../class-notes

24

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

(cont’d)
• mkdir

– MaKe DIRectory

– Syntax: mkdir <directories>

– Example: mkdir backups class-notes

• rmdir
– ReMove DIRectory, which must be empty

– Syntax: rmdir <directories>

– Example: rmdir backups class-notes

25

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

Exercise #2
1. Check your SHELL ‘echo $SHELL’

2. Change directory to /tmp ‘cd /tmp’

3. Change directory back to ‘cd $USER’

4. Make a directory ‘mkdir test1’

5. Change directory to test1 ‘cd test1’

6. Make a directory ‘mkdir test1-1’, ‘mkdir test1-2’

7. Change directory to test1-2 ‘cd test1-2’

8. List files upper directory ‘ls ..’

9. Change directory to test1-1 ‘ls ../test1-1’, ‘pwd’

10.Change directory to home directory ‘cd ../../‘

11.‘cd test1’ and remove directories ‘rmdir test1-1’ ‘rmdir test1-2’

12.Change directory to home ‘cd ~’

26

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

Files
• Unlike Windows, in LINUX file types (e.g. “executable

files, ” “data files,” “text files”) are not determined by
file extension (e.g. “foo.exe”, “foo.dat”, “foo.txt”)

• Thus, the file-manipulation commands are few and
simple

• Many commands only use 2 letters

• rm

– ReMoves a file, without a possibility of “undelete!”
– Syntax: rm [options] <file(s)>

– Example: rm tutorial.txt backups/old.txt
– -r option: recursive (delete directories)

– -f option: force. Do no matter what

27

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

Files (cont’d)
• cp

– CoPies a file, preserving the original

– Syntax: cp [options] <sources> <destination>

– Example: cp tutorial.txt tutorial.txt.bak
– -r option: recursive (copies directories)

• mv
– MoVes (renames) a file or directory, destroying the original

– Syntax: mv [options] <sources> <destination>

– Examples:

• mv tutorial.txt tutorial.txt.bak
• mv tutorial.txt tutorial-slides.ppt backups/

28

2015 Ontario Summer School on High Performance Computing

Note: Both of these commands will over-write existing files 
 without warning you!

Linux/SHELL programming

More Commands
• diff - attempts to determine the minimal set of

changes needed to convert a file specified by the first
argument into the file specified by the second argument

– Syntax: diff [options] <FILES>
– Example: diff a.txt a1.txt

• find - Searches a given file hierarchy specified by path,
finding files that match the criteria given by expression

– Syntax: find [path...] [expression]

– Example: find ./ -name ”tes.h" –print

29

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

More Commands
• tar - manipulates archives

– An archive is a single file that contains the complete
contents of a set of other files; an archive preserves the
directory hierarchy that contained the original files.
Similary to a VMARC file

– Syntax: tar [OPTION...] [FILE]...

– Archive files: tar –cvf tarfile.tar ./isaac/*

– Archive & compress (gzip):  
tar –cvfz tarfile.tar.gz ./isaac/*

– Extract a tar file: tar –xvf tarfile.tar
– Extract a tar-gzip file: tar –xvfz tarfile.tar.gz

30

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

File Permissions

• The long version of a file listing (ls -l) will
display the file permissions:

31

2015 Ontario Summer School on High Performance Computing

-rwxrwxr-x 1 rvdheij rvdheij 5224 Dec 30 03:22 hello
-rw-rw-r-- 1 rvdheij rvdheij 221 Dec 30 03:59 hello.c
-rw-rw-r-- 1 rvdheij rvdheij 1514 Dec 30 03:59 hello.s
drwxrwxr-x 7 rvdheij rvdheij 1024 Dec 31 14:52 posixuft

Permissions

Owner

Group

Linux/SHELL programming

File Permissions

• Linux provides three kinds of permissions:

– Read (r, 4) - users with read permission may read

the file or list the directory

– Write (w, 2) - users with write permission may

write to the file or new files to the directory

– Execute (x, 1) - users with execute permission

may execute the file or lookup a specific file
within a directory

32

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

Interpreting File Permissions

33

2015 Ontario Summer School on High Performance Computing

-rwxrwxrwx
Other permissions

Group permissions

Owner permissions

Directory flag (- = file;d=directory; l=link)

Linux/SHELL programming

Changing File Permissions
• Use the chmod command to change file permissions

– The permissions are encoded as an octal number

34

2015 Ontario Summer School on High Performance Computing

chmod 755 file # Owner=rwx Group=r-x Other=r-x

chmod 500 file2 # Owner=r-x Group=--- Other=---

chmod 644 file3 # Owner=rw- Group=r-- Other=r--

chmod +x file # Add execute permission to file for all

chmod o-r file # Remove read permission for others

chmod a+w file # Add write permission for everyone

http://linux.com.hk/man/showman.cgi?manpath=/man/man1/chmod.1.inc

Linux/SHELL programming

Exercise #3
1. Copy tutorial file ‘cp /home/isaac/ss15_1.tar.gz ~’

2. Uncompress/untar the file ‘gunzip ss15_1.tar.gz’ and ‘tar xvf ss15_1.tar’

or ‘tar zxvf ss15_1.tar.gz’

3. Change directory to ss15_1 ‘cd ss15_1’ and list files ‘ls -lrt’

4. Find the file with name ‘session1.pdf’ using find command ‘find ./ -name
‘session1.pdf’ -print’

5. Make a directory test1 in ss15_1 and copy session1.pdf to test1

6. Change directory to test1

7. Check the permission and make it accessible/readable to your group

35

2015 Ontario Summer School on High Performance Computing

2015 Ontario Summer School on High Performance Computing

Break!

36

Linux/SHELL programming

Processes
• Foreground

– When a command is executed from the prompt and
runs to completion at which time the prompt returns is
said to run in the foreground

• Background

– When a command is executed from the prompt with

the token “&” at the end of the command line, the
prompt immediately returns while the command
continues is said to run in the background

• Check the process

– Command: ps, top, kill

37

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

Top

38

2015 Ontario Summer School on High Performance Computing

top - 00:34:10 up 258 days, 14:53, 3 users, load average: 2.35, 2.46, 2.45
Tasks: 733 total, 3 running, 729 sleeping, 0 stopped, 1 zombie
Cpu(s): 8.1%us, 0.3%sy, 0.0%ni, 91.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 33011060k total, 32360816k used, 650244k free, 512k buffers
Swap: 31999988k total, 31999988k used, 0k free, 1992976k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
15100 pliang 20 0 143m 15m 1280 R 87.9 0.0 827:27.72 perl
27937 pliang 20 0 159m 31m 1168 R 86.6 0.1 2756:46 perl
19100 pliang 20 0 33504 16m 676 S 3.3 0.1 0:00.10 samtools
19101 pliang 20 0 0 0 0 Z 3.0 0.0 0:00.09 samtools <defunct>
10357 nobody 20 0 384m 133m 756 S 0.7 0.4 46:22.81 gmond
18964 isaac 20 0 16464 1720 892 R 0.7 0.0 0:00.48 top
 99 root 20 0 0 0 0 S 0.3 0.0 71:16.49 events/0
 103 root 20 0 0 0 0 S 0.3 0.0 12:22.73 events/4
 1301 root 20 0 0 0 0 S 0.3 0.0 3:27.49 edac-poller
 1872 root 20 0 10912 592 400 S 0.3 0.0 76:22.21 irqbalance
 3880 alikey 20 0 15816 660 488 S 0.3 0.0 2:17.05 top
 1 root 20 0 21436 1068 876 S 0.0 0.0 0:13.59 init
 2 root 20 0 0 0 0 S 0.0 0.0 0:03.25 kthreadd
 3 root RT 0 0 0 0 S 0.0 0.0 2:56.19 migration/0
 4 root 20 0 0 0 0 S 0.0 0.0 3:08.42 ksoftirqd/0
 5 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/0
 6 root RT 0 0 0 0 S 0.0 0.0 0:26.57 watchdog/0
 7 root RT 0 0 0 0 S 0.0 0.0 3:00.91 migration/1
 8 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/1
 9 root 20 0 0 0 0 S 0.0 0.0 2:35.75 ksoftirqd/1

Linux/SHELL programming

Processes

39

2015 Ontario Summer School on High Performance Computing

[root@penguinvm log]# sleep 10h &
[1] 6718
[root@penguinvm log]# ps -ef
UID PID PPID C STIME TTY TIME CMD
root 6718 6692 0 14:49 ttyp0 00:00:00 sleep 10h

& causes process to be run in
“background”

Job Number Process ID (ID) Parent Process ID

Linux/SHELL programming

Grep
• grep - Searches files for one or more pattern arguments.

It does plain string, basic regular expression, and
extended regular expression searching

40

2015 Ontario Summer School on High Performance Computing

 ps -ef |grep -i "isaac"

http://linux.com.hk/man/showman.cgi?manpath=/man/man1/grep.1.inc

Linux/SHELL programming

Command for Processes
• kill - sends a signal to a process or process group

• You can only kill your own processes unless you are root

41

2015 Ontario Summer School on High Performance Computing

UID PID PPID C STIME TTY TIME CMD
root 6715 6692 2 14:34 ttyp0 00:00:00 sleep 10h
root 6716 6692 0 14:34 ttyp0 00:00:00 ps -ef
[root@penguinvm log]# kill 6715
[1]+ Terminated sleep 10h

http://linux.com.hk/man/showman.cgi?manpath=/man/man1/kill.1.inc

Linux/SHELL programming

Environment Variables
• Environment variables are global settings that control the

function of the shell and other Linux programs. They are
sometimes referred to global shell variables.

• Check your environment

42

2015 Ontario Summer School on High Performance Computing

[isaac@saw377 ~]$ env
MKLROOT=/opt/sharcnet/intel/11.0.083/ifc/mkl
MODULE_VERSION_STACK=3.2.6
MANPATH=/opt/sharcnet/octave/current/share/man:/opt/sharcnet/netcdf/current/man:
FOAM_SOLVERS=/work/isaac/OpenFOAM/OpenFOAM-1.6/applications/solvers
FOAM_APPBIN=/work/isaac/OpenFOAM/OpenFOAM-1.6/applications/bin/linux64GccDPOpt
FOAM_TUTORIALS=/work/isaac/OpenFOAM/OpenFOAM-1.6/tutorials
FOAM_JOB_DIR=/work/isaac/OpenFOAM/jobControl
HOSTNAME=saw377
snrestart=--nosrun /opt/sharcnet/blcr/current/bin/sn_restart.sh
IPPROOT=/opt/sharcnet/intel/11.0.083/icc/ipp/em64t
INTEL_LICENSE_FILE=/opt/sharcnet/intel/11.0.083/ifc/licensesADFBIN=/opt/sharcnet/adf/current/bin

Linux/SHELL programming

Environment Variables
• Using Environment Variables:

– echo $VAR

– cd $VAR

– cd $HOME

• Displaying - use the following commands:

– set (displays local & env. Vars)
– export

• Vars can be retrieved by a script or a program

43

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

Some Important Environment Variables
• HOME

– Your home directory (often be abbreviated as “~”)

• TERM

– The type of terminal you are running (for example
vt100, xterm, and ansi)

• PWD

– Current working directory

• PATH

– List of directories to search for commands

44

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

PATH Environment Variable
• Controls where commands are found

– PATH is a list of directory pathnames separated by
colons. For example:

 PATH=/bin:/usr/bin:/usr/X11R6/bin:/usr/
local/bin:/home/alex/bin

– If a command does not contain a slash, the shell tries
finding the command in each directory in PATH. The
first match is the command that will run

– Set in /etc/profile, ~/.profile, ~/.bashrc

45

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

Editing Text
• Which text editor is “the best” is a holy war. Pick one and get

comfortable with it.

• Three text editors you should be aware of:

– nano – An improved ‘pico’ editor

• To quit: Ctrl-x

– emacs/xemacs – A heavily-featured editor commonly used in
programming

• To quit: Ctrl-x Ctrl-c

– vim/vi – Another editor, also used in programming

• To quit: <Esc> : q <Enter> (or QQ -- capitals matter)

46

2015 Ontario Summer School on High Performance Computing

Knowing the basics of emacs and vim will help with the rest of Unix; many
programs have similar key sequences.

Linux/SHELL programming

Alias
• An alias is nothing but shortcut to commands

• Use alias command to display list of all defined aliases

• Add aliases to ~/.bashrc file

47

2015 Ontario Summer School on High Performance Computing

alias name=‘command arg1 arg2’

alias rm='rm -i'
alias cp='cp -i'
alias mv='mv -i'
alias grep="grep -n"

Linux/SHELL programming

Exercise #4
1. Execute ‘top’ to see what processes are on (quit : ‘q’)

2. Do background job ‘sleep 10m &’ and check ‘ps -ef |grep $USER’

3. Kill the job ‘kill %1’ or ‘kill PID’

4. Goto ss15_1/run

5. Execute ‘a.out’ using two different ways

1. ‘./a.out’

2. ‘a.out’

6. Check your PATH ‘echo $PATH’

7. Add /home/$USER/ss15/run to the existing path and re-execute ‘a.out’

8. Add one alias into ~/.bashrc using text editor

alias grep="grep -n"

48

2015 Ontario Summer School on High Performance Computing

LINUX/SHELL programming

Pipe and Redirection
• Redirection (< or >)

• Pipe (|)

– Process are executed concurrently

49

2015 Ontario Summer School on High Performance Computing

$ ls –l > lsoutput.txt (save output to lsoutput.txt)
$ ps >> lsoutput.txt (append to lsoutput.txt)
$ more < killout.txt (use killout.txt as parameter to more)

$ ps | sort | more
$ ps –xo comm | sort | uniq | grep –v sh | more
$ cat mydata.txt | sort | uniq | > mydata.txt (generates an
empty file !)

LINUX/SHELL programming

Quota
• Quota

• df : report the space left on the file system

• du : output the number of kilobytes used by each dir.

50

2015 Ontario Summer School on High Performance Computing

[isaac@orc-login1:~] quota
Filesystem Limit Used File Count Checked
davy:/home 10 GB 1.4 GB (13%) 17,545 24h ago
cove:/work 1 TB 212.5 GB (20%) 951,454 19h ago

[isaac@orc-login1:/work/isaac/ss15_2] du -h .
133K ./Ex4
261K ./Ex1
6.5K ./Ex5/BCK
139K ./Ex5
1.4M ./MK
261K ./Ex3
133K ./Ex2
2.3M .

LINUX/SHELL programming

File
• File classifies the named files according to the type of data they contain

51

2015 Ontario Summer School on High Performance Computing

[[isaac@orc-login1:/work/isaac/channelflow] file *
bin: directory
branches: directory
channelflow-1.4.2: directory
couette.args: ASCII text
data: directory
frames: directory
include: directory
lib: directory
movieframes.args: ASCII text
randomfield.args: ASCII text
trunk: directory
u0.ff: data

LINUX/SHELL programming

History
• Shell keeps an ordered list of all the commands that you have entered.

52

2015 Ontario Summer School on High Performance Computing

$ history (show all your command history)
$!! (recall last command)
$!-3 (recall third most recent command)
$!5 (recall 5th command in list)
$!grep (recall last command starting with grep)
$ set history = 1000

Linux/SHELL programming

Modules

• What is a module system?

– A user interface to provide for the
dynamic modification of a user’s
environment via module files.

53

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

Modules (Example: loading WRF)
• Module list – list up the presently loaded modules

• Module avail – list up all available modules

54

2015 Ontario Summer School on High Performance Computing

[isaac@hnd50:~] module avail
------------------------------------ /opt/sharcnet/modules -----------------
acml/gfortran/3.6.0 acml/pgi-int64/4.2.0 lammps/10.08.2010
acml/gfortran/4.2.0 openmpi/intel-debug/1.4.3 wrf/3.2

[isaac@hnd50:~] module list
Currently Loaded Modulefiles:
 1) moab/5.4.2 7) r/2.10.0 13) gromacs/4.0.5
 2) sq-tm/2.4 8) namd/2.7b3 14) vmd/1.8.7
 3) intel/11.0.083 9) ansys/12.1.1 15) util/2.0
 4) openmpi/intel/1.4.2 10) lsdyna/ls971dR5.0 16) user-environment/1.0.0
 5) compile/1.3 11) fftw/intel/2.1.5
 6) octave/3.2.4 12) lammps/10.08.2010

Linux/SHELL programming

Modules (Cont’d)
• Module show [module] – load the module into the env

55

2015 Ontario Summer School on High Performance Computing

[isaac@hnd50:~] module show wrf/3.2

/opt/sharcnet/modules/wrf/3.2:
module-whatis Provide WRF/WPS 3.2 built using intel 11.0.083 and openmpi 1.4.2 on centos.
conflict wrf
prereq intel/11.0.083
prereq openmpi/intel/1.4.2
module load gmp/4.3.2
module load mpfr/2.4.2
module load netcdf/intel/4.1.2
prepend-path PATH /opt/sharcnet/wrf/3.2/wrfv3/main:/opt/sharcnet/wrf/3.2/wrfv3/run:/opt/
sharcnet/wrf/3.2/wrfv3/tools:/opt/sharcnet/wrf/3.2/wps:/opt/sharcnet/wrf/3.2/wps/util
prepend-path LD_RUN_PATH /opt/sharcnet/wrf/3.2/wps_libs/lib
prepend-path --delim LDFLAGS -L/opt/sharcnet/wrf/3.2/wps_libs/lib -L/opt/sharcnet/wrf/3.2/
wrfv3/main
prepend-path --delim CPPFLAGS -I/opt/sharcnet/wrf/3.2/wps_libs/include -I/opt/sharcnet/wrf/
3.2/wrfv3/inc

Linux/SHELL programming

Modules (Cont’d)
• Module load [module] – load the module into the env

56

2015 Ontario Summer School on High Performance Computing

[isaac@hnd50:~] module load wrf/3.2
[isaac@hnd50:~] module list
Currently Loaded Modulefiles:
 1) moab/5.4.2 6) octave/3.2.4 11) fftw/intel/2.1.5 16) user-environment/1.0.0
 2) sq-tm/2.4 7) r/2.10.0 12) lammps/10.08.2010 17) gmp/4.3.2
 3) intel/11.0.083 8) namd/2.7b3 13) gromacs/4.0.5 18) mpfr/2.4.2
 4) openmpi/intel/1.4.2 9) ansys/12.1.1 14) vmd/1.8.7 19) netcdf/intel/4.1.2
 5) compile/1.3 10) lsdyna/ls971dR5.0 15) util/2.0 20) wrf/3.2

Linux/SHELL programming

Modules (Cont’d)
• Module unload [module] – unload the module from the

env

57

2015 Ontario Summer School on High Performance Computing

[isaac@hnd50:~] module unload wrf
[isaac@hnd50:~] module list
Currently Loaded Modulefiles:
 1) moab/5.4.2 5) compile/1.3 9) ansys/12.1.1 13) gromacs/4.0.5
 2) sq-tm/2.4 6) octave/3.2.4 10) lsdyna/ls971dR5.0 14) vmd/1.8.7
 3) intel/11.0.083 7) r/2.10.0 11) fftw/intel/2.1.5 15) util/2.0
 4) openmpi/intel/1.4.2 8) namd/2.7b3 12) lammps/10.08.2010 16) user-
environment/1.0.0

Linux/SHELL programming

Job scheduler
• Job must be submitted through a job scheduler

– LSF/MOAB/PBS/TORQUE/MAUI

• SHARCNET provides a unified job scheduling script

– sqjobs – list the status of submitted jobs

– sqkill – stop/dequeue a runn

58

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

Job scheduler (Cont’d)
• Submitting serial jobs

• sqsub -r1h --test ./sim

• Submitting parallel jobs

• sqsub -r1h -q mpi --test -n 24 -o sim.out ./sim

• Submitting jobs with a memory request

• sqsub -r1h --mpp=2G -o sim.out ./sim

59

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

Programming languages
• Languages

o Fortran, C/C++, Java, MATLAB, etc.

• Compilers

o SHARCNET unified compilation environment

o cc, c++, f77/90, mpicc, mpic++, mpif77, mpif90

• Key Parallel Development Support

o MPI, POSIX threads API, OpenMP

60

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

X11
• X-Windows is the most common graphical interface for

Unix

• It allows graphics to be sent over the network (Windows

Remote Desktop is similar to this)

• If you login via the ssh-x shortcuts, you will start and “X-

server” on your machine and you will be able to get
graphics from your unix commands

• If you log into a linux box, you will automatically have X-
windows setup in that login.

61

2015 Ontario Summer School on High Performance Computing

Linux/SHELL programming

Exercise #5
1. Practice slide 49 for pipe

2. Make a ‘sqjobs.log’ file using ‘sqjobs -n’ and pipe direction

3. Move into your home directory and add list files into sqjobs.log

4. Check your quota and make sure size of each directory at your home

5. Practice ‘file’ command at your home

6. Check your module and module load samtools/1.1

7. Check your history and practice slide 52.

62

2015 Ontario Summer School on High Performance Computing

2015 Ontario Summer School on High Performance Computing

Thank you !

For further questions,

63

