
ComputeCanada
Ontario Summer
School on HPC
-‐ LINUX/SHELL programming

Isaac Ye
HPTC @York University

LINUX/SHELL programming

Overview

2

2015 Ontario Summer School on High Performance Computing

Session II 
(SHELL programming)

1) SHELL basics
2) Programming I

1) Variables
2) Quote
3) Environment variables
4) Read/Substitution
5) Arithmetic calculation

3) Programming II
1) Conditional Statement
2) SHELL parameters
3) Iteration statement

4) Makefile

LINUX/SHELL programming

What is Shell?
• Shell is the interface between end user and the system

3

2015 Ontario Summer School on High Performance Computing

LINUX/SHELL programming

The Shell of LINUX
• LINUX has a variety of different shells:

– Bourne shell (sh), C shell (csh), Korn shell (ksh), TC shell
(tcsh), Bourne Again shell (bash).

• Certainly the most popular shell is “bash”(Default at SHARCNET).
Bash is an sh-compatible shell that incorporates useful features
from the Korn shell (ksh) and C shell (csh).

• It is intended to conform to the IEEE POSIX P1003.2/ISO 9945.2
Shell and Tools standard.

• It offers functional improvements over sh for both programming
and interactive use.

4

2015 Ontario Summer School on High Performance Computing

LINUX/SHELL programming

History
• 1979: Bourne Shell (/bin/sh)

– first UNIX shell  
– still widely used as the LCD of shells

• 1981: C shell (csh) 
 – part of BSD UNIX 
 – commands and syntax which resembled C

 – introduced aliases, job control

• 1988: Bourne again shell (bash)

 – developed as part of GNU project (default shell in Linux)  
	 – incorporated much from csh, ksh and others  
	 – introduced command-line editing, functions, integer arithmetic, etc.

5

2015 Ontario Summer School on High Performance Computing

LINUX/SHELL programming

The first bash program (Hello World)
• There are two major text editors in LINUX: vi, emacs (or xemacs).

• So fire up a text editor; for example:

and type the following inside it:

• The first line tells LINUX to use the bash interpreter to run this script.
We call it hello.sh. Then, make the script executable:

6

2015 Ontario Summer School on High Performance Computing

$ vi

#!/bin/bash
echo “Hello World”

$ chmod 700 hello.sh
$./hello.sh
$ Hello World

LINUX/SHELL programming

The second bash program
• We write a program that copies all files into a directory, and then

deletes the directory along with its contents. This can be done with
the following commands:

• Instead of having to type all that interactively on the shell, write a
shell program instead:

7

2015 Ontario Summer School on High Performance Computing

$ mkdir trash
$ cp * trash
$ rm -rf trash

$ cat trash.sh
#!/bin/bash
#this script deletes some files
mkdir trash
cp * trash
rm -rf trash
echo “Deleted all files!”

LINUX/SHELL programming

Variables
• We can use variables as in any programming languages. Their values

are always stored as strings, but there are mathematical operators in the
shell language that will convert variables to numbers for calculations.

• We have no need to declare a variable, just assigning a value to its
reference will create it.

• Example

• Line 2 creates a variable called STR and assigns the string "Hello
World!" to it. Then the value of this variable is retrieved by putting the
'$' in at the beginning.

8

2015 Ontario Summer School on High Performance Computing

#!/bin/bash
STR=“Hello World!”
echo $STR

LINUX/SHELL programming

Warning !
• The shell programming language does not type-cast its variables.

This means that a variable can hold number data or character data.

• Switching the TYPE of a variable can lead to confusion for the writer
of the script or someone trying to modify it, so it is recommended to
use a variable for only a single TYPE of data in a script.

9

2015 Ontario Summer School on High Performance Computing

Count = 0
Count = Sunday

LINUX/SHELL programming

Single and Double Quote
• When assigning character data containing spaces or special

characters, the data must be enclosed in either single or double
quotes.

– Using double quotes to show a string of characters will allow any variables in the
quotes to be resolved

• Value of var is test string

– Using single quotes to show a string of characters will not allow variable resolution

10

2015 Ontario Summer School on High Performance Computing

$ var=“test string”
$ newvar=“Value of var is $var”
$ echo $newvar

Value of var is test string

$ var=‘test string’
$ newvar=‘Value of var is $var’
$ echo $newvar

Value of var is $var

LINUX/SHELL programming

The export command
• The export command puts a variable into the environment so it will be

accessible to child processes. For instance:

• If the child modifies x, it will not modify the parent’s original value.
Verify this by changing x in the following way:

11

2015 Ontario Summer School on High Performance Computing

$ x=hello
$ bash #Run a child Shell
$ echo $x

 #Nothing in x
$ exit #Return to parent
$ export x
$ bash
$ echo $x

hello #It’s there

$ x=ciao
$ exit
$ echo $x

hello

Linux/SHELL programming

Exercise #1
1. Make a bash script for the following features

1. Echo ‘Hello World’ using STR=“Hello World” variable

2. Refer to slide 10, make sure the difference between ‘’ and “”

2. Make a trash.sh based on the slide 7

3. Open 4 child shells and make sure where you are in.

note) You can copy all exercise scripts

• cp /home/isaac/ss15_s2.gz ~

• tar zxvf ss15_s2.gz

12

2015 Ontario Summer School on High Performance Computing

LINUX/SHELL programming

Exercise #1 (Cont’d)
• How to check which shell layer you are in?

13

2015 Ontario Summer School on High Performance Computing

[isaac@orc-login1:~] bash
[isaac@orc-login1:~] ps
 PID TTY TIME CMD
17800 pts/13 00:00:00 bash
18468 pts/13 00:00:00 bash
18497 pts/13 00:00:00 ps
[isaac@orc-login1:~] bash
[isaac@orc-login1:~] ps
 PID TTY TIME CMD
17800 pts/13 00:00:00 bash
18468 pts/13 00:00:00 bash
18498 pts/13 00:00:00 bash
18526 pts/13 00:00:00 ps
[isaac@orc-login1:~] exit
exit
[isaac@orc-login1:~] ps
 PID TTY TIME CMD
17800 pts/13 00:00:00 bash
18468 pts/13 00:00:00 bash
18527 pts/13 00:00:00 ps
[isaac@orc-login1:~] exit
exit
[isaac@orc-login1:~] ps
 PID TTY TIME CMD
17800 pts/13 00:00:00 bash
18574 pts/13 00:00:00 ps

LINUX/SHELL programming

Environmental Variables
• There are two types of variables:

– Local variables

– Environmental variables

• Environmental variables are set by the system and can usually be
found by using the env command. Environmental variables hold
special values. For instance:

14

2015 Ontario Summer School on High Performance Computing

$ echo $SHELL
/bin/bash
$ echo $PATH
/opt/sharcnet/openmpi/1.8.3/gcc/bin:/opt/sharcnet/gcc/4.8.2/bin

LINUX/SHELL programming

Environmental Variables
• Environmental variables are defined in /etc/profile, /etc/profile.d/ and

~/.bash_profile. These files are the initialization files and they are read
when bash shell is invoked.

• When a login shell exits, bash reads ~/.bash_logout

• The startup is more complex; for example, if bash is used
interactively, then /etc/bashrc or ~/.bashrc are read. See the man
page for more details.

15

2015 Ontario Summer School on High Performance Computing

LINUX/SHELL programming

Environmental Variables
• HOME: The default argument (home directory) for cd.

• PATH: The search path for commands. It is a colon-separated list of

directories that are searched when you type a command.

• Usually, we type in the commands in the following way:

• By setting PATH=$PATH:. our working directory is included in the
search path for commands, and we simply type:

16

2015 Ontario Summer School on High Performance Computing

$./command

$ command

LINUX/SHELL programming

Environmental Variables
• If we type in

and we include the following lines in the ~/.bashrc:

• We obtain that the directory /home/userid/bin is included in the
search path for commands.

17

2015 Ontario Summer School on High Performance Computing

$ mkdir ~/bin

PATH=$PATH:$HOME/bin

$ source ~/.bashrc

LINUX/SHELL programming

Environment Variables
• LOGNAME (USER): contains the user name

• HOSTNAME: contains the computer name.

• PS1: sequence of characters shown before the prompt

• Example:

18

2015 Ontario Summer School on High Performance Computing

\t hour
\d date
\w current directory
\W last part of the current directory
\u user name
\h hostname
\$ prompt character

$ PS1 = ‘hi \u *’
hi $USERID* __

LINUX/SHELL programming

Exercise #2
• Put following log-out comment into ~/.bash_logout

“Good-bye $USER!”

• Add /home/$USER/ss15_2/Ex2 directory into the existing path

• Copy trash.sh from Ex1 into /home/$USER/ss15_2/Ex2 and run it without (./)

• Change the prompt setting PS1 environment variable by export command
(export PS1=‘I am \u @\w’)

19

2015 Ontario Summer School on High Performance Computing

LINUX/SHELL programming

Read command
• The read command allows you to prompt for input and store it in a

variable.

• Example:

• Line 2 prompts for a string that is read in line 3. Line 4 uses the
interactive remove (rm -i) to ask the user for confirmation.

20

2015 Ontario Summer School on High Performance Computing

#!/bin/bash
echo -n “Enter name of file to delete: ”
read filename
echo “Type 'y' to remove it, 'n' to change your mind ... ”
rm -i $filename
echo “Done! That was YOUR decision!”

LINUX/SHELL programming

Command Substitution
• The backquote “ ` ” is different from the single quote “ ´ ”. It is used for

command

 substitution: `command`

• We can perform the command substitution by means of $(command)

21

2015 Ontario Summer School on High Performance Computing

$ LIST=`ls`
$ echo $LIST
hello.sh read.sh

$ PS1=“`pwd`>”
/home/userid/work> _

$ LIST=$(ls)
$ echo $LIST
hello.sh read.sh

Linux/SHELL programming

Exercise #3 (Cont’d)

22

2015 Ontario Summer School on High Performance Computing

#!/bin/bash
echo "Enter the directory you want to backup"
read dir
BCKFILE=backup-$(date +%d-%m-%y).tar.gz
BCKUP=/tmp/$BCKFILE
tar -cPzf $BCKUP $dir
echo "Compression is done! Enter the destination"
read newdir
mv $BCKUP $newdir
echo "Your backup file $BCKFILE is at $newdir"

LINUX/SHELL programming

Arithmetic Evaluation
• The let statement can be used to do mathematical functions:

• An arithmetic expression can be evaluated by $[expression] or $
((expression))

23

2015 Ontario Summer School on High Performance Computing

$ let X=10+2*7
$ echo $X
24
$ let Y=X+2*4
$ echo $Y
32

$ echo “$((123+20))”
143
$ VALORE=$[123+20]
$ echo “$[123*$VALORE]”
17589 32

LINUX/SHELL programming

Arithmetic Evaluation
• Available operators: +, -, /, *, %, ++, —, **

• Example

24

2015 Ontario Summer School on High Performance Computing

$ cat arithmetic.sh
#!/bin/bash
echo -n “Enter the first number: ”; read x
echo -n “Enter the second number: ”; read y
add=$(($x + $y))
sub=$(($x - $y))
mul=$(($x * $y))
div=$(($x / $y))
mod=$(($x % $y))
print out the answers:
echo “Sum: $add”
echo “Difference: $sub”
echo “Product: $mul”
echo “Quotient: $div”
echo “Remainder: $mod”

LINUX/SHELL programming

Case Statement
• Used to execute statements based on specific values. Often used in

place of an if statement if there are a large number of conditions.

• Value used can be an expression

• each set of statements must be ended by a pair of semicolons;

• a *) is used to accept any value not matched with list of values

25

2015 Ontario Summer School on High Performance Computing

case $var in
 val1)
 statements;;
 val2)
 statements;;
 *)
 statements;;
esac

LINUX/SHELL programming

Example (case.sh)

26

2015 Ontario Summer School on High Performance Computing

$ cat case.sh
#!/bin/bash
echo -n “Enter a number 1 < x < 10: ”
read x

case $x in
 1) echo “Value of x is 1.”;;
 2) echo “Value of x is 2.”;;
 3) echo “Value of x is 3.”;;
 4) echo “Value of x is 4.”;;
 5) echo “Value of x is 5.”;;
 6) echo “Value of x is 6.”;;
 7) echo “Value of x is 7.”;;
 8) echo “Value of x is 8.”;;
 9) echo “Value of x is 9.”;;
 0 | 10) echo “wrong number.”;;
 *) echo “Unrecognized value.”;;
 esac

Linux/SHELL programming

Exercise #3-1
1. Mae a ‘conv.sh’ script to convert km —> m and m—> cm.

Here is the expected run

27

2015 Ontario Summer School on High Performance Computing

$./conv.sh
Choose mode: (1) km --> m (2) m --> cm
1
Enter speed
10
10 km is 10000 m
$./conv.sh
Choose mode: (1) km --> m (2) m --> cm
2
Enter speed
1
1 m is 100 cm

Linux/SHELL programming

Exercise #3-2
1. Make a ‘runbackup.sh’ script to backup a directory into the designated location

• Read the target directory

• It should ‘tar’ all files in the target directory and compress it as zip file

• Hint) tar -zcPvf /tmp/backup-$(date +%d-%m-%y).tar.gz

• Read the destination directory

• mv the file to the destination directory

• Print “Your backup file backup-DD-MM-YY.tar.gz is at /work/
USERID”

28

2015 Ontario Summer School on High Performance Computing

2015 Ontario Summer School on High Performance Computing

Break!

29

LINUX/SHELL programming

Conditional Statements
• Conditionals let us decide whether to perform an action or not, this

decision is taken by evaluating an expression. The most basic form
is:	

• the elif (else if) and else sections are optional

• Put spaces after [and before], and around the operators and

operands.

30

2015 Ontario Summer School on High Performance Computing

if [expression];
 then
 statements
 elif [expression];
 then
 statements
 else
 statements
fi

LINUX/SHELL programming

Expressions
• An expression can be: String comparison, Numeric comparison, File

operators and Logical operators and it is represented by [expression]:

• String Comparisons:

31

2015 Ontario Summer School on High Performance Computing

 = compare if two strings are equal
!= compare if two strings are not equal
-n evaluate if string length is greater than zero
-z evaluate if string length is equal to zero

[s1 = s2] (true if s1 same as s2, else false)
[s1 != s2] (true if s1 not same as s2, else false)
[s1] (true if s1 is not empty, else false)
[-n s1] (true if s1 has a length greater then 0, else false)
[-z s2] (true if s2 has a length of 0, otherwise false)

LINUX/SHELL programming

Expressions
• Number Comparisons:

• Examples:

32

2015 Ontario Summer School on High Performance Computing

-eq compare if two numbers are equal
-ge compare if one number is greater than or equal to a number
-le compare if one number is less than or equal to a number
-ne compare if two numbers are not equal
-gt compare if one number is greater than another number
-lt compare if one number is less than another number

[n1 -eq n2] (true if n1 same as n2, else false)
[n1 -ge n2] (true if n1greater then or equal to n2, else false)
[n1 -le n2] (true if n1 less then or equal to n2, else false)
[n1 -ne n2] (true if n1 is not same as n2, else false)
[n1 -gt n2] (true if n1 greater then n2, else false)
[n1 -lt n2] (true if n1 less then n2, else false)

LINUX/SHELL programming

Examples

33

2015 Ontario Summer School on High Performance Computing

$ cat user.sh
 #!/bin/bash
 echo -n “Enter your login name: "
 read name
 if [“$name” = “$USER”];
 then
 echo “Hello, $name. How are you today ?”
 else
 echo “You are not $USER, so who are you ?”
 fi

LINUX/SHELL programming

Exercise #4
• Make a bash script with the following features

• Ask to enter/read login name and if the name is same with the userid print
“Hello Isaac! How are you today?” and move on to the next step, otherwise
print “You are not Isaac, Bye!” and break. (Hint: exit 1 for termination)

• Ask to enter a number from 1 to 10.

• If the number is greater than 10, print “You entered $value which is over the
limit” and stop

• If the number is less than 1, write ““You entered $value which is under the
limit”” and stop

34

2015 Ontario Summer School on High Performance Computing

LINUX/SHELL programming

Exercise #4 (Cont’d)

35

2015 Ontario Summer School on High Performance Computing

#!/bin/bash
echo -n "Enter your login name: "
read name
if ["$name" = "$USER"];
then
 echo "Hello, $name. How are you today ?"
else
 echo "You are not $USER, Bye~!"
 exit 1
fi

echo "Enter a number 1 to 10"
read num
if [$num -lt 10]; then
 if [$num -gt 1]; then
 echo "You enter a right number 1< $num <10"
 else
 echo "You enter $num which is under the limit"
 fi
else
 echo "You enter $num which is over the limit"
fi

LINUX/SHELL programming

Expressions
• Files operators:

• Examples:

36

2015 Ontario Summer School on High Performance Computing

-d check if path given is a directory
-f check if path given is a file
-e check if file name exists
-r check if read permission is set for file or directory
-s check if a file has a length greater than 0
-w check if write permission is set for a file or directory

[-d fname] (true if fname is a directory, otherwise false)
[-f fname] (true if fname is a file, otherwise false)
[-e fname] (true if fname exists, otherwise false)
[-s fname] (true if fname length is greater then 0, else false)
[-r fname] (true if fname has the read permission, else false)
[-w fname] (true if fname has the write permission, else false)

LINUX/SHELL programming

Example

37

2015 Ontario Summer School on High Performance Computing

#!/bin/bash  
if [-f /etc/fstab];
 then 
 cp /etc/fstab .
 echo “Done.”
 else 
 echo “This file does not exist.”
 exit 1
 fi

LINUX/SHELL programming

Expressions
• Logical operators:

• Example:

38

2015 Ontario Summer School on High Performance Computing

#!/bin/bash
 echo -n “Enter a number 1 < x < 10:”
 read num
 if [“$num” -gt 1 –a “$num” -lt 10];
 then
 echo "You enter a right number 1< $num <10"
 else
 echo "You enter $num which is out of the range"
 fi

! negate (NOT) a logical expression
-a logically AND two logical expressions
-o logically OR two logical expressions

LINUX/SHELL programming

Expressions
• Logical operators:

• Example:

39

2015 Ontario Summer School on High Performance Computing

#!/bin/bash
 echo -n "Enter a number 1 < x < 10: "
 read num
 if [“$number” -gt 1] && [“$number” -lt 10];
 then

echo "You enter a right number 1< $num <10"
 else
 echo "You enter $num which is under the limit"
 fi

&& logically AND two logical expressions
|| logically OR two logical expressions

LINUX/SHELL programming

Example

40

2015 Ontario Summer School on High Performance Computing

#!/bin/bash
echo "Enter a path: "; read dir

if [-d $dir]; then
 cd $dir
 echo "I am in $dir and it contains"; ls
else
 echo "The directory $dir does not exit";
 exit 1
fi

LINUX/SHELL programming

Shell Parameters
• Positional parameters are assigned from the shell’s argument when it

is invoked. Positional parameter “N” may be referenced as “${N}”, or
as “$N” when “N” consists of a single digit.

41

2015 Ontario Summer School on High Performance Computing

$# is the number of parameters passed
$0 returns the name of the shell script running as well as its  
 location in the file system
$* gives a single word containing all the parameters passed  
 to the script
$@ gives an array of words containing all the parameters  
 passed to the script

LINUX/SHELL programming

Shell Parameters (Cont’d)

42

2015 Ontario Summer School on High Performance Computing

$ cat sparameters.sh
#!/bin/bash
echo "$# - number of parameters"
echo "$0 - name of the script"
echo "$1 - first parameters"
echo "$2 - second parameters"
echo "$* - single word with all parameters"
echo "$@ - single array with all parameters"

$./sparameters.sh A B C
3 - number of parameters
sparameters.sh - name of the script
A - first parameters
B - second parameters
A B C - single word with all parameters
A B C - single array with all parameters

LINUX/SHELL programming

Example (case.sh)

43

2015 Ontario Summer School on High Performance Computing

$ cat case.sh
#!/bin/bash
echo -n “Enter a number 1 < x < 10: ”
read x

case $x in
 1) echo “Value of x is 1.”;;
 2) echo “Value of x is 2.”;;
 3) echo “Value of x is 3.”;;
 4) echo “Value of x is 4.”;;
 5) echo “Value of x is 5.”;;
 6) echo “Value of x is 6.”;;
 7) echo “Value of x is 7.”;;
 8) echo “Value of x is 8.”;;
 9) echo “Value of x is 9.”;;
 0 | 10) echo “wrong number.”;;
 *) echo “Unrecognized value.”;;
 esac

LINUX/SHELL programming

Iteration Statements
• The for structure is used when you are looping through a range of

variables.

• statements are executed with var set to each value in the list.

• Example

44

2015 Ontario Summer School on High Performance Computing

#!/bin/bash
 let sum=0
 for num in 1 2 3 4 5
 do
 let “sum = $sum + $num”
 done
 echo $sum

for var in list
 do
 statements
 done

LINUX/SHELL programming

Iteration Statements

45

2015 Ontario Summer School on High Performance Computing

#!/bin/bash  
for x in paper pencil pen
 do
 echo “The value of variable x is: $x”
 sleep 1
 done

$./iterfor.sh
The value of variable x is: paper
The value of variable x is: pencil
The value of variable x is: pen

LINUX/SHELL programming

Exercise #5
• Write a bash script to move files into the designated location and change the

permission of all files. The script should have the following feature

• Obtain the target directory as ‘argument’ (ex, ./runbaskcup.sh /home/isaac/
test)

• If no argument is provided, print “No target information provided” and break

• Check if there is a backup directory in /scratch/$USER/old and make a
directory if necessary.

• move into ss15/BCK directory (from the example gzip file)

• Using ‘for’ iteration, mv each file into /scratch/$USER/old and change the
permission into ‘700’

• Once it is done, list /scratch/$USER/old

46

2015 Ontario Summer School on High Performance Computing

LINUX/SHELL programming

Exercise #5 (Cont’d)

47

2015 Ontario Summer School on High Performance Computing

#!/bin/bash
BCKDIR=/scratch/$USER/old

if [$# -eq 0]; then
 echo “No target information provided”
 exit 1
fi
if [! -d "$BCKDIR"]; then
 mkdir -p "$BCKDIR"
fi

echo "The following files in $1 will be saved in the old
directory"

cd $1
for file in *
do
 cp $file "$BCKDIR"
 chmod 700 "$BCKDIR/$file"
done

ls -l "$BCKDIR"

LINUX/SHELL programming

Makefile
• Compiling the source code files can be tiring, especially when you

have to include several source files and type the compiling command
every time you need to compile. Makefiles are the solution to simplify
this task.

• Example:

main.cpp, hello.cpp, factorial.cpp, functions.h

(You can find these in ss15/Ex3)

• Make sure your module:

intel/15.0.2, mkl/11.1.4

48

2015 Ontario Summer School on High Performance Computing

LINUX/SHELL programming

Simple compilation
• The trivial way to compile is

• What if there are thousands of source code?

• Makefile is a good solution to manage a large project with many

different compilation options.

49

2015 Ontario Summer School on High Performance Computing

$ icc main.cpp hello.cpp factorial.cpp -o hello
$ ls -l hello
-rwxrwxr-x 1 isaac isaac 25616 May 24 00:19 hello

LINUX/SHELL programming

Makefile #1
• General syntax:

• The simplest one would be

• Be careful to have a tab before ‘icc’ as a separator

50

2015 Ontario Summer School on High Performance Computing

$ cat Makefile
run: main.cpp hello.cpp factorial.cpp functions.h

icc -o run main.cpp hello.cpp factorial.cpp -I.

$ make
icc -o run main.cpp hello.cpp factorial.cpp -I.
$./run
Hello World!
The factorial of 5 is 120

target [target …] : [dependent …]
[command …]

LINUX/SHELL programming

Makefile variables
• There are built-in variables for makefile

51

2015 Ontario Summer School on High Performance Computing

C C++ FORTRAN ARCHIVE

CC CXX FC AR

CFLAGS CXXFLAGS FFLAGS ARFLAGS

LIBS: library link
INCLUDE: header file location
DEPS: dependent files

LINUX/SHELL programming

Makefile #2
• Makefile variables can be used as followed

• ‘clean’ target is used to remove the previous outputs and compilation
error cores.

52

2015 Ontario Summer School on High Performance Computing

$ cat Makefile
CC = icc
CFLAGS = -I.

run: main.cpp hello.cpp factorial.cpp functions.h
 $(CC) -o run main.cpp hello.cpp factorial.cpp $(CFLAGS)

clean:
 rm -rf run *.o *.core

LINUX/SHELL programming

Makefile #3
• Makefile has Macros:

• For example, we could use this as follows

• Implicit rule for the construction of .o (obj) files out of .cpp (src)

53

2015 Ontario Summer School on High Performance Computing

$@ : name of the file to be made
$? : name of the changed dependents
$< : name of the related file that caused the action
$* : the prefix shared by target and dependent files
$^ : name of all dependent files separated by spaces

run: main.cpp hello.cpp factorial.cpp functions.h
 $(CC) $(CFLAGS) $? -o $@

.o.cpp:
$(CC) $(CFLAGS) -c $<

LINUX/SHELL programming

Makefile #3 (Cont’d)
• Makefile using the special macros:

54

2015 Ontario Summer School on High Performance Computing

$ cat Makefile
CC = icc
CFLAGS = -I.
DEPS = functions.h

%.o: %.cpp $(DEPS)
 $(CC) $(CFLAGS) -c -o $@ $<

run: main.o hello.o factorial.o
 $(CC) $(CFLAGS) -o $@ main.o hello.o factorial.o

clean:
 rm -rf run *.o *.core

$ make
icc -I. -c -o main.o main.cpp
icc -I. -c -o hello.o hello.cpp
icc -I. -c -o factorial.o factorial.cpp
icc -I. -o run main.o hello.o factorial.o

LINUX/SHELL programming

Makefile #4
• Makefile using the special macros:

55

2015 Ontario Summer School on High Performance Computing

$ cat Makefile
CC = icc
CFLAGS = -I.
DEPS = functions.h
OBJ = main.o hello.o factorial.o

%.o: %.cpp $(DEPS)
 $(CC) $(CFLAGS) -c -o $@ $<

run: $(OBJ)
 $(CC) $(CFLAGS) -o $@ $^
clean:

 rm -rf run *.o *.core

LINUX/SHELL programming

Exercise (Job Submission)
• Monte Carlo-type simulations

- once the experiment is designed and parameters set, we need to
submit vast numbers of jobs to the queue

- can speed this process dramatically using a script to do the  
submissions

• Notes:  
This is most easily accomplished by having the program take its
parameters either on the command-line, or from a file that is
specified on the command-line; similarly, output should either go to
stdout or to a file specified on the command-line

– makes it easy to submit from the same directory

– “for each set of parameters, submit a job with those parameters”

56

2015 Ontario Summer School on High Performance Computing

LINUX/SHELL programming

Exercise (Job Submission)

57

2015 Ontario Summer School on High Performance Computing

#!/bin/bash
 
DEST_DIR is the base directory for submission # EXENAME is the name
of the executable  
 
DEST_DIR=/work/$USER/MC  
EXENAME=hello_param
cd ${DEST_DIR}  
for trial in 1 2 3 4 5; do

for param in 1 2 3; do
echo "Submitting trial_${trial} - param_${param}..."
sqsub -q serial -o OUTPUT-${trial}.${param}.txt ./${EXENAME} $
{trial}-${param}

done
done

2015 Ontario Summer School on High Performance Computing

Thank you !

For further questions,

58

