
The Shell

Tyson Whitehead

May 25, 2021

COURSE

1 Introduction 1
1.1 Etiquette, Zoom, and Slack . 1
1.2 Motivation . 4

2 Supercomputers 5
2.1 Usefulness . 5
2.2 Canada . 6
2.3 Accounts . 6
2.4 Systems . 7
2.5 Storage . 8
2.6 Running programs . 8
2.7 Support . 8

3 Accessing 9
3.1 Logging in . 9
3.2 Data storage . 11
3.3 Getting around . 13
3.4 Technicalities . 16
3.5 Transferring files . 17

4 Composition 21
4.1 Viewing and editing . 22
4.2 Regular expressions and globing . 24
4.3 Redirection and pipes . 26

5 Automation 29
5.1 Scripting . 30
5.2 Submitting jobs . 33
5.3 Loops . 35

6 Quick Reference 37
6.1 Key Features . 37
6.2 File system . 37
6.3 Devices . 39
6.4 Commands . 39
6.5 Editors . 42
6.6 Command Line . 43
6.7 Scripting . 45
6.8 Regular Expressions . 46

7 Search 49

i

ii

CHAPTER

ONE

INTRODUCTION

Welcome to the first workshop of our 2021 Summer School. This workshop is composed of a two hour monring
sessions and four hour afternoon session

• May 25: 10:00-12:00 and 13:00-17:00

and these sessions are broken down into a series of short live demos followed by exercises. Feel free to follow along
on the demos. The exercises will be done individually in smaller breakout groups with staff member to answer any
questions.

Each part builds on the previous parts, so it is best to attend the entire thing from start to end. While we are starting
assuming no prior knowledge of the command line, we will go quite far, so do not be off put if things seem pretty
basic at the start.

Our training website https://training.sharcnet.ca has links to a readable version of today’s presentation in web, pdf,
and epub format. You do not have to worry about taking notes or falling behind.

1.1 Etiquette, Zoom, and Slack

Before getting started, we would like to introduce you to the online platform Zoom and discuss the online etiquette
that we expect throughout the workshop.

First I would like to ask everyone to mute their microphone. You can do this by click the microphone icon. The
microphone icon is in the far left of the menu that pops up on the bottom of the zoom window when you move your
mouse on it. You know your microphone is muted when you see a red slash through the microphone icon.

It is good etiquette to leave your microphone off unless you are speaking as otherwise everyone will hear the back-
ground noise from your space, and we will be forced to mute you, which is something you cannot undo. If you want,
you can also turn off your video by clicking the video camera icon to the immediate right of the microphone icon.

1

https://training.sharcnet.ca

The Shell

On the subject of ediquette, we want to maximize learning in these sessions by creating a welcoming and supportive
environment for everyone regardless of background, identity, or knowledge level . Please be mindful to not engage in
any behavior that is going to diminish the experience for any of the participants or the instructors.

One of the options in the bottom menu bar of the zoom window when you move your mouse over it is the people
icon labeled Participants. Clicking this gives you a list of all the meeting participants. If you move the mouse over
yourself, you will see you that a rename button appears. Please rename yourself if your current name does not reflect
who you are.

At the top of the participants list are staff members. There is myself, Tyson. I have Instructor after my name as I am
teaching today’s session. Joining me are several of my colleagues, all of whom have Assistant after their names. There
is James, who will be teaching tomorrow’s session, Jinhui, Jose, and Tyler, who have volunteered to help, and Paul
and Sergey who are taking care of the backed. Feel free to reach out to any of the assistants at any point during the
presentation with your questions or issues. All of us are HPC Analysts with SHARCNET, and together we represent a
fairly formidable coverage of scientific disciplines.

There are yes, no, go slower, and go faster buttons at the bottom of the participants window. An online workshop like
this one lack the face-to-face feedback that we usually rely on to pace ourselves, we need you to use these buttons
during the course to give us feedback. In fact, lets try it now. Click the yes button if you are on the participants lists
and are following along.

While Zoom has a chat feature (shown above, and available by clicking the chat bubble icon labeled Chat on the bottom
menu bar), this year we have decided to use slack instead. It is more fully featured and extends beyond the limits of
this presentation. To join the sharcnetsummerschool slack workspace, you need to click the Link to join SHARCNET
Summer School 2021 Slack link under the Slack subsection of the 2021SS Common Area on the our training website
https://training.sharcnet.ca. Subsequently you can just go directly to https://sharcnetsummerschool.slack.com.

2 Chapter 1. Introduction

https://training.sharcnet.ca
https://sharcnetsummerschool.slack.com

The Shell

After joining the sharcnetsummerschool slack workplace, click on the course_intro channel on the left-hand side. You
can post your questions and comments in here. We will respond back. Feel free to also answer and comment on others
questions keeping our etiquette principles in mind. When responding back to others, use the reply in thread option
that pops up when you hover your mouse over their comment, as show above. This prevents a lot of back and forth
from overcluttering the channel and making things hard for other to follow.

1.1.1 Exercises

The final item I would like to introduce you to is breakout rooms. Throughout the workshop, we are going to have
exercises. For these exercises we are going to split the class into small groups with a staff member in each group. Lets
do that now so everyone gets a chance to see what this is like.

1. In a few moments, your computer should prompt you to join a breakout room. Please join the breakout room
(click the button on the window that pops up) and introduce yourself to the other members of your breakout
room (what is your discipline and what are you hoping to get from the workshop)

I will close the breakout rooms and bringing everyone back to main room in a couple of minutes.

1.1. Etiquette, Zoom, and Slack 3

The Shell

1.2 Motivation

In this workshop we are going to take you over the basics of using Canada’s HPC resources to get your work done.

That is, we are going to teach you the old school way of running your programs and processing your data with your
keyboard and commands and not your mouse and buttons. In the process, we hope that you will discover that they
keyboard and commands, far from being archaic, are actually very will suited for automation and keep track of what
you have done to repeat it or communicate it to others in the future.

As a small example, say we had collected 100 .data files in the Example folder and wanted to prefix them with today’s
date. This would be a long tedious point and click session using a GUI

Using the command line though, it would only be four simple lines and complete in less than a second

today=$(date +%Y-%M%-d)
for file in *.data; do

mv $file $today-$file
done

It would also be trivial to save these lines in a file for future reference, share with a colleague, or incorporate them
into a bigger set of commands to do more complex operations on the files. This last point is key. The command line
composes. You can combine small bits into big bits, and big bits into bigger bits. This is extremely powerful. GUIs
do not compose.

4 Chapter 1. Introduction

CHAPTER

TWO

SUPERCOMPUTERS

Let us put aside the command line for a bit though to first talk about supercomputers in Canada.

2.1 Usefulness

The first thing I would like to address is what a supercomputer is. There is no hardware that we can buy that you
cannot also buy. What we can do, though, is buy a lot more hardware.

A super computer is, therefore, not some super fast computer that hardware companies only sell to a select few
organizations. It is, instead, the standard computers and computer hardware that hardware companies sell to everyone
bought and assembled on a massive scale.

To make an analogy, a supercomputer is team of scientists solving a problem faster through collaboration. It is not a
superhero scientist solving a problem fast through pure personal awesomeness.

Thinking about the team analogy will answer many basic questions about using a supercomputer. For example, most
problems fall between the following two cases

• I have many smaller independent tasks that need to be done.

• I have one large highly dependent task that needs to be done.

5

The Shell

2.1.1 Exercises

What do you think about these two tasks? Using the yes and no buttons on the participant window, answer the following
question

1. If you have 20 people available to help you with many smaller independent tasks that need to be done (e.g.,
weighing 100 samples), can you expect to be finished about 20x faster?

2. If you have 20 people available to help with a single large highly dependent task (e.g., writing your thesis), can
you expect to be finished about 20x faster?

2.2 Canada

The supercomputer story in Canada is actually pretty ideal from a researcher perspective. While there are several
different organizations providing research supercomputers across Canada, we are all part of the Compute Canada
organization. We have standardized our accounts, our software, and our support.

This means a single account gets you access to all the systems, and you can move seamlessly from system to system
with an minimal learning curve as they are all configured with minimal differences.

Documentation for all our systems is found on the Compute Canada wiki

https://docs.computecanada.ca

The main page includes, amongst other things, information on

• applying for an account (on the left hand side)

• the current systems (in the systems and services table)

• installed software (in the systems and services table)

• frequently asked questions (in the systems and services table)

• how to connect, transfer files, and run jobs (how-to guides table)

2.3 Accounts

As explained on our documentation page, our accounts are organized into principle investigators (PIs) and PI sponsored
users. The former must be faculty at eligible institutes (Universities, Colleges, etc.) and the later must be associated
with a registered PI.

For most everyone here, this will mean your supervisor must first have an account. The you can go to the Compute
Canada Database (CCDB) site

https://ccdb.computecanada.ca

and apply for an account

• click register button below the sign in boxes

• agree to the Compute Canada policies

• indicate you don’t have a prior account (unless you do of course!)

• fill in the person information

• pick an appropriate sponsored roll (e.g., Master’s student)

• enter your supervisor’s Compute Canada Roll Identifier (CCRI)

6 Chapter 2. Supercomputers

https://docs.computecanada.ca
htts://ccdb.computecanada.ca

The Shell

• pick a username and password

The CCRI identifies your sponsor’s account. It is a combination of letters and number like tuv-232-02 that they can get
by logging into the CCDB site and picking My Account -> Account Details and looking at the first line in the Active
Roles box.

After submission, your sponsor will be sent an email asking them to confirm that they are sponsoring you. Once they
have done this, your account will be enabled and you will be able to access all the Compute Canada systems with the
exception of Niagara.

To also access Niagara you will need to login to the CCDB site and go My Account -> Request access to legacy clusters
and click the Request access to Niagara and Mist button.

2.4 Systems

As covered on the Compute Canada document wiki, the four major supercomputers currently operating in Canada are

Organization Super Computer Nodes Cores Storage
Calcul Québec Béluga 872 34,880 11.6PB
SHARCNET Graham 1,261 41,548 15.3PB
SciNet Niagara 2,016 80,640 9.4PB
WestGrid Cedar 2,502 101,424 13.8PB

• node - means a single computer

• core - means a single CPU (generally 32 or more per node)

The individual nodes (computers) are connect by a very fast, low-latency, low-congestion network (typically full data
rate Infiniband) in order to ensure there are no barriers for programs that need multiple nodes to collaborate when
solving problems.

Most of the individual nodes (computers) in a supercomputer are the same. On graham, for example, most nodes have

• 32 cores

• 125GB of memory

but some have

• 44 or 64 cores (for large threaded jobs),

• 250GB, 502GB or 3,022GB of memory (for large memory jobs), or

• Pascal, Volta, or Turing GPUs (for GPGPU jobs)

to also enable computations that require these more specialized resources.

2.4. Systems 7

The Shell

2.5 Storage

Each supercomputer has its own storage systems. All the nodes (computers) in a supercomputer share the same storage.
Within a supercomputer, the folder you are under determines what storage system you are working with. There are
three main storage systems

Storage Folder Group Expiration HPC Size Files
/home/ No No No 50GB 500K
/scratch/ No 60 days Yes 20TB 1,000K
/project/ Yes No Yes 1TB 500K

where size and file number limits are for graham (the other supercomputers have similar, but slightly different, limits).
All the file systems but /scratch are backed up each day.

Our data policy is that the data belongs to the sponsor. This means that you loose access to files when your sponsor
stops sponsoring you (e.g., you graduate and move on, you have a falling out, etc.), so make sure to keep a person
copy of anything you really care about too.

2.6 Running programs

The Canadian supercomputers, as with most around the world, run Linux. Linux is an open source operating started
by a Finish Computer Science student named Linus in 1991. It is based on the Unix standard (Linux is a composition
of the words Linus and Unix) and is now developed collaboratively by many people from all over the Internet.

Linux is not Windows, and Windows programs will not, for the most part, run on Linux. To run a program on the
supercomputers, it needs to be a Linux program, or you need to have the source code so you can build the program
yourself for Linux.

The good news is that we have already done this for almost the common programs that our users use. The Compute
Canada documentation wiki contains an extensive list of the programs we have already installed along with any specific
information required to run a program, such as licensing configuration for commercial software.

The other thing that is important to know about the supercomputers is they are not a free for all. You do not pick a
node (computer) at random and go run your program on it. Rather you tell the system what you want to run and what
resources it needs (how much time, how much memory, etc.). It will then run your program in such away to ensure it
has access to all the resources it needs, that it does not interfere with other running programs, and that no one hogs the
system.

We will cover how to schedule and mange your jobs later in this course.

2.7 Support

Support is provided through a single email address support@computecanada.ca Emailing this address will open a
ticket on the Compute Canada support website and our staff will direct your question to the support individual most
suitable for helping you across Canada. So long as it isn’t later in the afternoon, response time is generally the same
day.

Many institutions, such as Western, also have local staff on site, such as myself. You can also contact us directly,
although we generally prefer you to use the support email as this permits us to better mange and direct queries (e.g.,
taking into account the current workload of our staff in order to get you the fastest answer back).

8 Chapter 2. Supercomputers

mailto:support@computecanada.ca
https://www.support.computecanada.ca

CHAPTER

THREE

ACCESSING

The Canadian supercomputers can be access from anywhere there is internet access using the address <supercom-
puter>.computecanada.ca and the secure shell client suite of commands

• ssh - used to run commands (secure shell)

• scp - used to copy files (secure copy)

• sftp - alternative to copy files (secure file transfer protocol)

These commands are available to use in the terminal under both Linux and Mac OS X (search for terminal in your
applications menu). Windows 10 provides the secure shell client programs (the ones listed above) as an installable
component or part of the Linux Subsystem for Windows (which is actually really great as it provides all the common
Linux commands for Windows).

In all versions of Windows, you can also install the free version of MobaXterm. This is a popular choice as it includes
a basic Cygwin installation (a local bash shell, many of the basic utilities, and an X11 server) along with a graphical
file transfer program that lets you click-to-edit and drag-and-drop files any time you are connected. For just the ssh,
scp, and sftp utilities, another popular Windows option is PuTTY.

• MobaXterm - https://mobaxterm.mobatek.net/

• PuTTY - https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

3.1 Logging in

I am now going to show how to connect to the SHARCNET supercomputer graham from a local shell session on
your computer using the ssh command. I will then break everyone out into breakout rooms, where you can all try to
connect to graham using your Compute Canada account and your secure shell program.

To use the ssh command, we have to first start the terminal program. For Linux and Mac OS X, the terminal program
can be found by searching for terminal under the applications menu. For Windows I startup MobaXterm, click the
Sessions icon in the upper-left, and then click the Shell icon the middle-right.

9

https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse
https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://mobaxterm.mobatek.net/
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

The Shell

The terminal application gives you a window from which you can interact with text-based programs. When the
terminal starts, it starts a text-based program (the shell) for starting other text based programs. The shell, colloquially
referred to as the command line, does what is known as a read, evaluate, print, loop (REPL). That is, through the
terminal application, the shell interacts with me by

• (R)eading a command from me,

• (E)valuating the command,

• (P)rinting the results of the command, and

• (L)ooping (reads the next command, etc.)

Right now we are on the first step. I enter my command. A command is the name of the program to run followed by
any information that program needs to be told in order to do its thing. The program I want to run is called ssh and I
want to tell ssh to connect to graham.computecanada.ca as the user tyson. So I type

[tyson@tux:~]$ ssh tyson@graham.computecanada.ca

and press enter. This brings us to the second step. The computer runs the ssh command. The ssh command prompts
me for a password, logs me into the graham supercomputer, and starts a new command line session, inside my existing
one. On graham I use the wget (web get) command to download a copy of the data we will be using and the unzip
command to unpack it

[tyson@gra-login3 ~]$ wget https://staff.sharcnet.ca/tyson/flights.zip
[tyson@gra-login3 ~]$ unzip flights.zip

When I am done running commands on graham, I type

10 Chapter 3. Accessing

The Shell

[tyson@gra-login3 ~]$ exit

This causes my command line session on graham to complete, and, in turn, the ssh command I ran on my computer
also completes, causing my computer to now prompt me for my next command. I can type exit to also close the
session on my computer (close the terminal application) or enter another command.

3.1.1 Exercises

Now I am going to send everyone to the breakout rooms again.

Your colleagues and out staff member in the breakout rooms will assist you if you run into problems. If you get stuck,
please speak up and share your screen by pressing the Share Screen icon so our staff, and the others in your breakout
room, can assist you. It is important that you get this working as otherwise you won’t be able to do any of the rest of
the workshop.

1. Connect to graham using your secure shell program with your username and password and download and unzip
the sample data https://www.sharcnet.ca/~tyson/flights.zip we will be using in the course.

You don’t need to exit from graham at the end as I did as will continue using it with our next exercise. Note also that
the Compute Canada wiki page contains details pages on using ssh, PuTTY, and MobaXterm.

• SSH

• Connecting with MobaXterm

• Connecting with PuTTY

3.2 Data storage

Now that we are are all logged into graham with a command line, we are going to review the basics of data storage on
computers. Data is stored in a hierarchical tree structure. This tree is made up of series of folders that contain your
files. The files and folders relevant to my account are

/
home

| ...
| tyson
| | flights.zip
| | flights
| | 0144f5b1.igc
| | 2191bc99.igc

...
nearline

def-tyson -> /nearline/6001152
def-tyson-ab -> /nearline/6023753

projects
def-tyson -> /project/6001152
def-tyson-ab -> /project/6023753

scratch -> /scratch/tyson
...

...
nearine
...

6001152
6023753

(continues on next page)

3.2. Data storage 11

https://www.sharcnet.ca/~tyson/flights.zip
https://docs.computecanada.ca/wiki/SSH
https://docs.computecanada.ca/wiki/Connecting_with_MobaXTerm
https://docs.computecanada.ca/wiki/Connecting_with_PuTTY

The Shell

(continued from previous page)

...
...

project
...

6001152
6023753

...
...

scratch
...

tyson
...

• file - named piece of data

• folder - container holding files and further folders

• link - a reference to another file or folder

Before the graphical analogy to a filling system, folders were called directories, and this is reflected in the names of
command line commands (e.g., change directory, print working directory, etc.), so we will use that.

To specify a piece of data, we need to specify both the file name the data is stored under and the series of directories
(folders) that that filename is stored under. It isn’t sufficient to tell someone (or the computer) just the filename as
they would then have to look through all the folders to find it, and they very well might find another file with the same
name in a different directory (folder).

To uniquely specify a piece of data we, therefore, have to specify all the parts from the start. For example

• start at the start

• under the home directory

• under the tyson directory

• under the flights directory

• the data is in the 0144f5b1.igc file

When writing this down, we separate all the components with a / and call it a path because it gives the path to follow
through the directories to locate the file. A leading / says the path is absolute as it starts at the very start. The above
example would be /home/tyson/flights/0144f5b1.igc.

Frequently we are only referring to files relative to some common starting point, such as the location of my person
storage /home/tyson, in which case we call it a relative path and do not include the leading /. The above example would
be flights/0144f5b1.igc.

When working with data on another computer, we need to specify not only the full file path to the data, but
also computer it is on, and the username to use to login to that computer to get it. An example might be
tyson@graham.computecanada.ca:/home/tyson/flights/0144f5b1.igc

You may be more familiar with a Windows file specifications, which would look something more like
C:\Users\Tyson\Desktop\flights\0144f5b1.igc. The key difference here is that in Windows uses \ instead of / to sep-
arate the components and explicitly specifies the physical location of the storage at the start of the path with a drive
letter like C:.

There are also no drive letters with Linux. The physical storage is implicit in the path. When I plugin a USB stick, for
example, a new path like /media/tyson/80BC-6336 shows up under which I can access all the files and directories on
that USB stick. The mount command can be used to view what storage is under what paths, but we won’t be plugging
any USB sticks into the supercomputers, so we will leave it at that.

12 Chapter 3. Accessing

The Shell

3.3 Getting around

Under a GUI we navigate our folders (directories) and files with a file manager. A typical graphical file manager shows
us the path of the folder we are viewing and its contents as a series of icons

Like a file manager, the command line has a directory (folder) that it is currently in. We call this the working directory,
and the pwd (print working directory) command will tell us what it is

[tyson@gra-login3 ~]$ pwd
/home/tyson

We so frequently want to refer to files relative to our home directory, that the command line provides ~ as shortcut
to means /home/tyson. With this information, you can see that the command line is actually configured to tell us
exactly where we are every time we enter a command. That is, [tyson@gra-login3 ~]$ is saying the command you
enter is going to run

• under the user tyson

• on the computer gra-login3

• in the directory /home/tyson

If you become a power user with many terminals open at once, you will appreciate this information in your face every
time you enter a command.

The file manager also shows us each of the files and folders (directories) in its working directory. The ls (list)
command does the same in the command line

[tyson@gra-login3 ~]$ ls
flights flights.zip nearline projects scratch

If we hover our mouse over a file or folder or right click and picking properties, we can get extra details about a file
or folder, such as the day it was created, its size, and the access permissions. The ls command will also provide this
information to us if we ask it to with the -l (long) switch

[tyson@gra-login3 ~]$ ls -l
total 2804
drwxr-xr-x 2 tyson tyson 141 Mar 1 2018 flights
-rw-r----- 1 tyson tyson 2794605 Mar 2 2018 flights.zip
drwxr-xr-x 2 root tyson 4 May 24 23:47 nearline
drwxr-xr-x 2 root tyson 4 May 24 23:47 projects
lrwxrwxrwx 1 tyson tyson 14 May 24 23:47 scratch -> /scratch/tyson

The file manage lets us open the file by double clicking on it, or right clicking and picking open with. For example,
double clicking on the flights.zip will likely open it in the zip extractor program and let us unpack it. We have already

3.3. Getting around 13

The Shell

seen how to do this with the command line when we ran the command unzip flights.zip.

The file manager also lets us go into the other folders (directories) in the current folder (working directory) by single
or double clicking on them. The command line provides a cd (change directory) command to do this. For example,
the equivalent of going into the flights folder and looking around would be

[tyson@gra-login3 ~]$ cd flights
[tyson@gra-login3 flights]$ pwd
/home/tyson/flights
[tyson@gra-login3 flights]$ ls
0144f5b1.igc 2191bc99.igc 4620f232.igc ...

You will note that when we moved into the flights directory, the prompt changed from ~ (the abbreviation for
/home/tyson) to flights to reflect the fact that we are now in the flights folder. In the file manager, we can click a
prior part of the path (or the back arrow) to return to where we were. The command line provides a special folder
called .. that refers to the parent folder to allow you to go back

[tyson@gra-login3 flights]$ cd ..
[tyson@gra-login3 ~]$ pwd
/home/tyson

This is actually baked right into the operating system, it just isn’t normally shown as files and folders that begin with
a period are not shown unless the -a (all) flag is used

[tyson@gra-login3 ~]$ ls -a
. .. .bash_history .bash_logout ...

It is good to know this as many time special things like configurations are stored under files or folders with a leading
dot in order to not cluttering up your regular listing. You can also see there is a . in addition to the .. directory. The
. directory is the directory itself. This is convenient as we frequently want to tell a command to do something to this
directory (i.e., copy the files from some place to this directory).

With the file manager we could create a new folder called downloads by right clicking and picking create new ->
folder and then copy the flighs.zip file to it by dragging it over and dropping it on the new downloads folder icon. With
the command line we can make a new folder with the mkdir (make directory) command and copy the flights.zip file
to it with the cp (copy) command

[tyson@gra-login3 ~]$ mkdir downloads
[tyson@gra-login3 ~]$ cp flights.zip downloads/

where for copy like commands you generally specify one or more source followed by a destination separated by
spaces. The trailing / on the destination is optional, but it makes it unambiguous that downloads is suppose to be a
directory to a copy of the flights.zip file in. Without the trailing / the cp command determines whether downloads is
a folder to put it based on checking to see if downloads is an existing directory or not.

We have put together a quick reference guide to many of the common (and not so common) commands and options
for you to refer to (see the reference link in the course index) as the goal of this course it not to put you to work
memorizing a bunch of commands. The commands you frequently use will commit to your memory soon enough
through regular usage without any effort on your part. You can look up the others when you need to.

14 Chapter 3. Accessing

The Shell

3.3.1 Exercises

These exercises assume the following file and directory layout that exists after the previous demonstration (adjusting
tyson to your username)

/
home

| ...
| tyson
| | downloads
| | | flights.zip
| | flights.zip
| | flights
| | 0144f5b1.igc
| | 2191bc99.igc

...
...

| ...
...

Discuss your answers and test them out to verify if you are correct or not.

1. The full set of options for a command can be found in the manual page. The command man <command>
(e.g., man ls, man cp, etc.) will bring up the manual page for a command. Use the arrows and page up/down
keys to scroll around, q to quit, and /<text> to search for . Using the ls manual page, answer the following
questions

a. What does the command ls -lh do?

b. What does the command ls -R do?

c. How do you sort by last modified date?

2. Starting from /home/tyson/flights directory, which of the following commands can be used to switch to the home
folder (remember .. goes the parent directory and . stays in the same place)?

a. cd .

b. cd /

c. cd /home/tyson

d. cd ..

e. cd ~

f. cd home

g. cd ~/flights

h. cd

i. cd ../../tyson

3. If pwd displays /home/tyson/flights, what does ls ../downloads display?

a. ls: cannot access ‘../downloads’: No such file or directory

b. downloads flights flights.zip

c. 0144f5b1.igc 2191bc99.igc . . .

d. flights.zip

4. The rmdir (remove directory) command removes a directory. Trying to remove the downloads directory gives

3.3. Getting around 15

The Shell

[tyson@gra-login3 ~]$ rmdir downloads
rmdir: failed to remove 'downloads': Directory not empty

This implies we have to empty the directory first with the rm (remove) command. Fortunately rm has an option
that will remove everything in one go. Use the manual page to figure out the required command.

5. How can the mv command be used to rename flights.zip in /home/tyson to flights-downloaded.zip?

3.4 Technicalities

Now that we have run some commands, and had a look at some of the manual pages, we are going to take a moment
to step back discuss some of the technicalities and syntax. The command line we are using is called bash. This is an
acronym for Bourne-again shell, which is a word play on the original Bourne shell from which it descended. There are
many shells, including the original sh, ksh, csh, their decedents ash, bash, dash, tcsh, and the even newer zsh and fish.

The subject of what shell to use can be somewhat of an almost religious issue for some. We are learning bash as it
is the most widely used and the default on most system. It is bit crufty due to its extended history, but works well.
The biggest gotchas with bash is that variable expansion also undergoes word splitting and pathname expansion unless
quoted. This means many people’s scripts do not properly handle filenames with spaces in them. Neither zsh, which
is very compatible with bash, nor fish, which is not, have this issue.

In the command line quick reference we have stated that programs are run by specifying the command followed by
the arguments separated by spaces. That is

[tyson@gra-login3 ~] <program> [argument] ...

When we write something this way, it is not something you are suppose to type in literally. Rather it is a syntax
specification that tells you how to put together the required components when specifying your command. You need to
replace the items in the angle and square brackets with what they describe.

That is, <program> should be replaced by the the name of the program you wish to run (e.g., ls), and [argument]
should be replaced by the argument you wish to provide to the program (e.g., -l). The difference between the <>s
and []s is that the former has to be present while the later is optional. That is, a command must included a program
to run, it does not need to include an argument. The full syntax is

• <xyz> - xyz is required

• [xyz] - xyz is optional

• <xyz> ... - xyz is optionally repeated (more of the same)

• <xyz> | <uvw> - either xyz or uvw but not both

With this in mind, we can now see that saying the syntax for a command line is <program> [arguments] .
.. means a command is a required program name followed by any number of optional arguments (including none)
separated by spaces.

Sometimes type faces or capitalization are also used to indicate what parts of a statement are suppose to be typed
exactly as is and what parts are suppose to be substituted. Running man cp to bring up the manual page for the cp
command gives the following three ways the cp command can be used

cp [OPTION]... [-T] SOURCE DEST
cp [OPTION]... SOURCE... DIRECTORY
cp [OPTION]... -t DIRECTORY SOURCE

We can see that this manual page is using capitalization instead of angle brackets to specify what parts are suppose to
be substituted with what they describe. From this we see there are actually three distinct modes in which cp can run,

16 Chapter 3. Accessing

The Shell

and all three allow any number of the options (e.g., -a, -b, -d, -f, etc.) to be specified. The first is when you specify
only a source and destination file name, as in

[tyson@gra-login3 ~] mkdir example
[tyson@gra-login3 ~] cp -T flights-downloaded.zip example/flights.zip

This make a copy of the SOURCE file called DEST. We have provided the optional -T parameter in this example.
This doesn’t do anything unless DEST happens to exist as a directory. In this case cp will provide an error instead of
assuming you are invoking the second variant of the command.

[tyson@gra-login3 ~] cp -T flights-downloaded.zip example
cp: cannot overwrite directory 'example' with non-directory

Without this option, we would inadvertently invoke the second form of the cp command which copies one or more
files into a destination directory, as in

[tyson@gra-login3 ~] cp flights/0144f5b1.igc flights/2191bc99.igc example

The final is the same as the second except you specify the destination directory first

[tyson@gra-login3 ~] cp -t example flights/0144f5b1.igc flights/2191bc99.igc

again this is provided only to ensure you don’t accidentally invoke the first form when you really wanted the second
form.

[tyson@gra-login3 ~] cp -t examplee flights/0144f5b1.igc flights/2191bc99.igc
cp: failed to access 'examplee': No such file or directory

One final nice feature of bash is that it has a history of prior run commands and does completion of commands and
filenames. Pressing the up and down arrow keys will scroll through your previously run commands so you can edit
and rerun them without having to type them all back in. Pressing the tab key partway through a filename or command
will complete it up to the first ambiguity. Pressing tab key again will display all possibilities. For example

[tyson@gra-login3 ~] r<PRESS TAB TWICE>
Display all 158 possibilities? (y or n) y
ranlib reduce_test ...
[tyson@gra-login3 ~] rm -fr exa<PRESS TAB ONCE>
[tyson@gra-login3 ~] rm -fr example/

where we are absuing our angle bracket and capital notation to tell you to press the tab key. I would strongly rec-
ommend forcing yourself to use tab competition throughout this workshop as, once it becomes second nature, it will
vastly improve the speed with which you can run commands.

3.5 Transferring files

The other use of the secure shell client programs is for transfer files. The scp (secure copy) command is basically a
version of the cp command where you can specify a remote computer as the source or destination. As an example of
this command, I will end my session on graham, which returns me to the command line on my local Linux computer,
and use the scp command to copy the /home/tyson/flights/0144f5b1.igc file from graham

[tyson@gra-login3 ~] exit
[tyson@tux:~]$ scp tyson@graham.computecanada.ca:~/flights/0144f5b1.igc .

Note that I’ve used . as the location to copy the file to, which means the working directory.

3.5. Transferring files 17

The Shell

There are also many graphical applications, such as MobaXterm and WinSCP under Windows, that use the secure file
transfer protocol (sftp) in the background to let you simply drag and drop files between your computer. Most Linux
file managers also have this ability built into them and you simply needs to specify the remote path to accessing using
the special sftp://<user>@<computer>/<path> URL

You may need to setup your secure shell client with a secure shell key so it can login to graham without using a
password for this work. See the Compute Canada documentation wiki for details on how to do this.

Linux and Mac OS X (if you install FUSE for macOS) also have the the ability to splice a remote file system into your
local file system using the sshfs command. For example,

[tyson@tux:~]$ mkdir graham
[tyson@tux:~]$ ls graham
[tyson@tux:~]$ sshfs tyson@graham.computecanada.ca:/home/tyson graham
[tyson@tux:~]$ ls graham
flights flights-downloaded.zip

This is quite powerful as you can then do anything you can do with local files on the remote files. Examples include
simply using the standard cp (copy) command to copy them to a local path

[tyson@tux:~]$ cp graham/flights-downloaded.zip .

or even directly edit them in your standard editor. Of course they will take longer to access though as they are actually
being transfered back and forth under the hood using the secure shell system. The fusermount command with the
-u option un-splices the remote file system

[tyson@tux:~]$ fusermount -u graham
[tyson@tux:~]$ ls graham

3.5.1 Exercises

1. Transfer some of the .igc files in the flights directory to your computer. Have a look at them in your text editor
and view them in the online IGC file viewer. We will be using command lines tools to automate processing of
these files shortly.

2. The rsync command is very useful when working on multiple computers. An example of typical usage might
be

[tyson@tux:~]$ rsync -e ssh -auvP tyson@graham.computecanada.ca:/home/tyson/
→˓flights .

Use the rsync manual page to describe what this command does.

3. What advantage does rsync have over using -r with scp to recursively copies all files and directories?

18 Chapter 3. Accessing

https://osxfuse.github.io/
https://igcviewer.bgaladder.net/

The Shell

4. Would it be easier to automate dragging and dropping new files or running an rsync command for weekly
updates?

3.5. Transferring files 19

The Shell

20 Chapter 3. Accessing

CHAPTER

FOUR

COMPOSITION

As has already been hinted at, the power of the command line system is not so much how amazing (or not) the
individual commands are, but how well those commands can be easily combined together to give new desired behavior.
The reason for this is, in any graph, the number of edges can grow much faster than the number of nodes.

That is, consider a system with just 10 programs. If these programs can only be used independently of each other, as
is often the case with GUI programs, then we have 10 programs that we can run. If each of these programs can be
combined with one of the others though, then we also have 10 x 9 = 90 compositions we can run. Further, when we
get another program, if it only stands on its own, the we have increase our options by 1 (from 10 to 11). If it can be
combined with the others though, the our combinations increases by 20 (from 10 x 9 = 90 to 11 x 10 = 110).

In order for programs to compose, they need to talk a common language. In Linux, with it’s Unix heritage, this is text.
As Doug McIlrory, who invented Unix pipes said,

This is the Unix philosophy: Write programs that do one thing and do it well. Write programs to work
together. Write programs to handle text streams, because that is a universal interface

The other universality you will find in Linux is a huge amount of information about the operating system itself is
exposed as text files. This allows all programs to consume and manipulate this information. To quote the Unix
Architecture page on Wikipedia

With few exceptions, devices and some types of communications between processes are managed and
visible as files or pseudo-files within the file system hierarchy. This is known as everything’s a file.

As a simple example of this lets look at the /proc/cpuinfo and /proc/meminfo files using the cat command which
prints all the files it is given to the screen one after another (concatenates them together)

[tyson@gra-login3 ~] cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 79
model name : Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz
...
[tyson@gra-login3 ~] cat /proc/meminfo
MemTotal: 131624960 kB
MemFree: 27484820 kB
MemAvailable: 53464260 kB
SwapCached: 42912 kB
...

Having all this information available to us as simple text files gives us a lot of power in our shell. Things that would
be only available by writing a program to make a special operating system (OS) call in another OS, can be retrieved
and manipulated with our basic file commands like cat in our shell.

21

The Shell

4.1 Viewing and editing

One of the challenges in preparing a course is to come up with interesting examples. Several years ago, my wife’s
cousin took her flying in a glider. She really enjoyed the experience, and a couple of years ago we joined the London
Soaring Club to learn how to fly gliders too. This has proven to be a lot of fun. To give you a better visual, here is a
random picture from the internet of a trainee in a two-seater trainer (the instructor sit in the seat behind you).

The gliders all have GPS trackers in them, and the club has a variety of awards that are awarded each year based on the
traces (e.g., who gained the most altitude, who flew the furthest, etc.). Going through these files by hand is a tedious
chore, but it is easy to automate with the command line, and is typical of the sort of data and log file real-world pre-
and post-processing we frequently have to do as research.

The flights.zip file we have downloaded and unpacked contains a variety of glider flight traces and we are going to use
them for our exercises now. We have already introduced the cat command to display the entire contents of a file (or
multiple files). Often we are only interested in the start or end of a file though. The head and tail commands allow
us to extract just the start of end of a file. Both show ten lines by default, but can be told to show an arbitrary number
with the -n <number> option. Using this to look at one of the igc files

[tyson@gra-login3 ~]$ head flights/0144f5b1.igc
AXCSAAA
HFDTE030816
HFFXA050
HFPLTPILOTINCHARGE:Lena
HFGTYGLIDERTYPE:L23 Super Blanik
...
[tyson@gra-login3 ~]$ tail flights/0144f5b1.igc
B2116474309137N08057022WA002870042000309
B2116524309138N08057024WA002870041800309
B2116574309138N08057024WA002870041800309
B2117024309138N08057024WA002870041800309
B2117074309138N08057024WA002870041800309
...

We see the files are composed of a series of records. Googling will give the full igc file specification, but, for our
purposes, the records of interest are the date record, the pilot record, the plane record, and GPS position record

HFDTE<DD><MM><YY> (date: day, month, year)

HFPLTPILOTINCHARGE:<NAME> (pilot: name)

HFGIDGLIDERID:<CALLSIGN> (plane: call sign)

B<HH><MM><SS> (time: hour, minute, second,
<DD><MM><mmm>N (latitude: degrees, minute, decimal minutes)

(continues on next page)

22 Chapter 4. Composition

The Shell

(continued from previous page)

<DDD><MM><mmm>W (longitude: degrees, minutes, decimal minutes)
A<PPPPP><GGGGG> (altitude: pressure, gps)
<AAA><SS> (gps: accuracy, satellites)

Linux also comes with a variety of text editors. The two most common ones are emacs and vi, both of which were
created in 1976, have an almost cult-like following, and will seem quite strange to the uninitiated. The quick reference
guide contains the basic key strokes/commands to use these editors. For a new user, the most important thing to know
is how to exit these editors if you accidentally get into them

• emacs - press CTRL+x CTRL+c

• vi- type :q!

where CTRL+<key> means to press while holding down the control key. Other ways you will see CTRL+c written
is ^c and C-c.

For a first time user, nano is likely a good choice for making simple edits. It is a basic no-frills editor that lets you
move around with the cursor keys and make edits as most people expect. The key sequences to exit, save (write out)
the file, and so on are printed at the bottom of the screen so using the ^<key> format (e.g., press while holding down
the control key to exit), so you won’t forget them.

Sometimes, when you run a command, it will start an editor for you to edit something. Chances are this editor will be
vi and you will need to know the :q! sequence to get out. You can set a person default editor by setting EDITOR
environment variable to the editor you want

export EDITOR=nano

There are actually many such settings that programs inherit from your command line session, and even more that are
just specific to bash and not inherited by other programs. They are documented in the various commands manual
pages. The commands in ~/.bash_profile (~ mean /home/tyson) are always run at each login, so it is a good place put
such setting that you always want set.

We will do this now to demonstrate editing a file.

[tyson@gra-login3 ~]$ nano .bash_profile

After editing ~/.bash_profile (runs every login) or ~/.bashrc (runs every time bash runs), always test you can still
login with a new ssh session in a new terminal. These are startup files, and some errors can leave you unable to login,
which will be impossible to fix unless you still have an active sessions running to fix things.

4.1. Viewing and editing 23

The Shell

4.1.1 Exercises

An example of something we may want to do with these files is determine which pilot each file belongs to in order to
give each member a copy of their file. In this exercise we are just going to use our new commands to look at the files
a do a few operations by hand to get an idea of the sort of things we will be automating.

1. Using head to look at a few (say 3-5) of the igc files (refer to the igc file specification given earlier) and answer
the following questions

a. who the pilot is, and

b. what the year was.

2. For each of these files first few files, use the mkdir and cp commands to

a. make a directory for that pilot (if required),

b. make a directory in the pilot’s directory for that year (if required), and

c. copy the file into the pilot/year directory.

3. What happens if you run cat, head, and tail without any filename argument? In trying this, be aware that
CTRL+c can be used to abort most command and CTRL+d signals the end of keyboard input.

4.2 Regular expressions and globing

The grep (global regular expression search) command searches through files for regular expressions. Regular ex-
pressions are a sequence of characters that define a search pattern. Variants of them are supported by a wide range
of applications, including google sheets, and are well worth learning. A very simple usage would be to use grep to
extract all the line that starts with HFPLT from an igc file

[tyson@gra-login3 ~]$ grep ^HFPLT flights/0144f5b1.igc
HFPLTPILOTINCHARGE:Lena

As can be seen in the above example, a regular expression is simply a sequence of regular characters that match
themselves plus some special characters like ^ that match things like the start of the line. The most basic matches
supported by almost all regular expressions are (these are covered in our quick reference guide and the grep manual
page too)

• ^ - match start of line

• $ - match end of line

• character - match the indicated character

• . - match any character

• [. . .] - match any character in the list or range (^ inverts)

• (. . .) - group

• . . .|. . . - match either or

• ? - match previous item zero or one times

• * - match previous item zero or more times

• + - match previous item one or more times

• {. . .} - match previous item a range of times

24 Chapter 4. Composition

The Shell

Regular expression implementations frequently differ in what special characters have to be escaped (proceeded with a
\) to have the above special meaning or not. For example, grep supports both basic and extended regular expressions
where the former requires several of the special characters to be escaped to have their special meaning and the latter
does not.

A more complex example would

[tyson@gra-login3 ~]$ grep '^B.*A.......5..' flights/0144f5b1.igc
B1837024309903N08053926WA009230050102706
B1837074309873N08053817WA009200051002706
...

which gives all GPS trace lines with a GPS altitude recording of 500-599 meters.

In this example we have enclosed the regular expression in single quotes. This is because bash also has sequences that
it treats special, and this includes * which, without the single quotes, indicates a glob pattern for pathname expansion.
Glob patterns allow us to specify pathnames with the following wildcards

• * - match any number of characters (include none)

• ? - match any single character

• [. . .] - match any character in this list

When bash sees unquoted versions of these in a command line, it replaces the pattern with all pathnames that match
the pattern. This allows us to easily run commands like extract the pilot line from all the igc files

[tyson@gra-login3 ~]$ grep ^HFPLT flights/*.igc
0144f5b1.igc:HFPLTPILOTINCHARGE:Lena
04616075.igc:HFPLTPILOTINCHARGE:Bill
...

It is important to realize is that it is bash that literally replaces the pattern with all the matching pathnames. The
command that is being run never sees the patterns. It just gets the list of files, exactly as if we had typed in all the
filenames ourselves.

There are actually many such expansions that can occur, and sometimes it is useful to know what the command really
being run is. The set -x command tells bash to print out each command it runs, and set +x tells bash to stop
printing them out. We can use this to see exactly how our pattern gets expanded into the command that is run

[tyson@gra-login3 ~]$ set -x
[tyson@gra-login3 ~]$ grep ^HFPLT flights/*.igc
+ grep --color=auto '^HFPLT' flights/0144f5b1.igc flights/04616075.igc ...
0144f5b1.igc:HFPLTPILOTINCHARGE:Lena
04616075.igc:HFPLTPILOTINCHARGE:Bill
...
[tyson@gra-login3 ~]$ set +x

This also shows something I hadn’t intended to talk about. The grep command is automatically being provided an
--color=auto option. This is done with the bash aliases feature which can provide default arguments and short
forms for various commands. It is also commonly used to make -i (verify) a default for many commands like rm.
You can view the current set of alias with the alias command and read more about them in the bash manual page.

4.2. Regular expressions and globing 25

The Shell

4.3 Redirection and pipes

Now that we have a simple way of extracting all the pilot and date fields from all the igc files, we need to use a
redirection to save it in a file so we can process it further. Redirections are specified at the end of the command
line with the < and > characters. A simple mnemonic is that they are like arrows re-directing the input and output,
receptively from and to a file. An example redirection to save out list of pilots to pilots would be

[tyson@gra-login3 ~]$ grep ^HFPLT flights/*.igc > pilots-extracted

Running this command produces no output as all the output has been redirected from the screen to the pilots file, as
we can easily verify by loading pilots in our editor or printing it out using cat

[tyson@gra-login3 ~]$ cat pilots-extracted
flights/0144f5b1.igc:HFPLTPILOTINCHARGE:Lena
flights/04616075.igc:HFPLTPILOTINCHARGE:Bill
flights/054b9ff8.igc:HFPLTPILOTINCHARGE:Lena
...

We only want the pilot names though, not the filename and the HFPLTPILOTINCHARGE: field identifier. To remove
these we can use the cut command which lets us cut out bits from a line. The pilot names always start at the 41st
character in this output, so one way to do this would be to specify -c 41-, which means give me from character
41 to the end of the line. A simpler way though is to note the line is broken in parts with the : character. With this
observation, we can use -d : to break it up into three pieces as -f 3 to select the third

[tyson@gra-login3 ~]$ cut -d : -f 3 pilots-extracted
Lena
Bill
Lena
...
[tyson@gra-login3 ~]$ cut -d : -f 3 pilots-extracted > pilots-names

The only issue we have now is we have each pilot listed for each flight they took. We would like to have each pilot
listed only once. As it happens, there is uniq command that removes duplicate lines. On closer reading of the manual
page though, it becomes apparent that uniq only removes duplicate lines if they are adjacent, and states that you have
to run your file through the sort command first. Doing this we get

[tyson@gra-login3 ~]$ sort pilots-names > pilots-sorted
[tyson@gra-login3 ~]$ uniq pilots-sorted
Aasia
Bill
Fred
...

Creating a bunch of intermediate files simply to feed the output from one command into the input of the next command
is tedious though, so bash provides a | (pipe) syntax to do this for us. With this syntax we can eliminate all the
temporary files in

[tyson@gra-login3 ~]$ grep ^HFPLT flights/*.igc > pilots-extracted
[tyson@gra-login3 ~]$ cut -d : -f 3 pilots-extracted > pilots-names
[tyson@gra-login3 ~]$ sort pilots-names > pilots-sorted
[tyson@gra-login3 ~]$ uniq pilots-sorted

and collapse it down to just

[tyson@gra-login3 ~]$ grep ^HFPLT flights/*.igc | cut -d : -f 3 | sort | uniq
Aasia

(continues on next page)

26 Chapter 4. Composition

The Shell

(continued from previous page)

Bill
Fred
...

As a small point of clarification, this pipe command is not creating temporary files and providing them to the com-
mands. Rather it redirecting the (screen) output of each program into the (keyboard) input of the next one. This works
as all the above commands (and most others) get their input from the keyboard if a filename is not specified (this came
up in an earlier exercise). The above is then technically equivalent to

[tyson@gra-login3 ~]$ grep ^HFPLT flights/*.igc > pilots-extracted
[tyson@gra-login3 ~]$ cut -d : -f 3 < pilots-extracted > pilots-names
[tyson@gra-login3 ~]$ sort < pilots-names > pilots-sorted
[tyson@gra-login3 ~]$ uniq < pilots-sorted

4.3.1 Exercises

In these exercises we are going to create a series of pipelines for extracting key bits of information from our igc files.
In the next section we will be converting these pipeline commands into shell scripts.

The key to to building a successful pipeline is to build it up slowly and test each addition. Instead of typing in an entire
pipeline, running it, and then not knowing where it went wrong, test each stage and get it correct before adding the
next. This is very easy to do as the up arrow brings up the previous commands run for further editing and re-running.
For example

[tyson@gra-login3 ~]$ grep ^HFPLT flights/*.igc | head
[tyson@gra-login3 ~]$ grep ^HFPLT flights/*.igc | cut -d : -f 3 | head
[tyson@gra-login3 ~]$ grep ^HFPLT flights/*.igc | cut -d : -f 3 | sort | head
[tyson@gra-login3 ~]$ grep ^HFPLT flights/*.igc | cut -d : -f 3 | sort | uniq

First an output redirection question though.

1. What is the difference between redirecting output with > and >> (hint, try running the same redirected command
twice and see what happens to the output file in each case).

2. Create pipelines to extract

a. the flight date from a single igc file,

b. all flight years from all igc files,

c. all GPS time records from a single igc file, and

d. all GPS altitude records from a single igc file.

3. Extend the GPS time record extraction pipeline

a. to give the starting (first) time, and

b. to give the finishing (last) time.

4. Extend the GPS altitude record extraction pipeline to give the highest altitude.

4.3. Redirection and pipes 27

The Shell

28 Chapter 4. Composition

CHAPTER

FIVE

AUTOMATION

The command line keeps track of prior commands that have been run. These include both interactively selecting prior
commands to re-run

• up and down arrow keys to bring back up prior commands

• CTRL+r to interactively search through prior commands

and the history command to display the last commands. This lets us process our history of commands with our
commands.

As an example, we created a variety of pipelines for extracting information from the igc files, such as

[tyson@gra-login2 ~]$ grep '^B' flights/0144f5b1.igc | cut -c 31-35 | sort | tail -n 1

which gives the highest GPS altitude recorded in the given igc file. After such as session we can use the history
command along with output redirection to save the commands we came up with to a file for future reference of sharing
with a colleague

[tyson@gra-login2 ~]$ history 20 > flight-commands

where the 20 specifies that we want the last twenty commands run. From this it is trivial to open our file up in a text
editor like nano and clean it up a bit to get a nice reference

[tyson@gra-login2 ~]$ nano flight-commands
...
[tyson@gra-login2 ~]$ cat flight-commands
Reference of useful pipes for working with igc files extracted from history

Date
grep '^HFDTE' flights/0144f5b1.igc | cut -c 6-

Pilot
grep '^HFPLT' flights/0144f5b1.igc | cut -d : -f 2

Plane
grep '^HFGIDGLIDERID' flights/0144f5b1.igc | cut -d : -f 2

Start time
grep '^B' flights/0144f5b1.igc | cut -c 2-7 | head -n 1

End time
grep '^B' flights/0144f5b1.igc | cut -c 2-7 | tail -n 1

Highest GPS altitude
grep '^B' flights/0144f5b1.igc | cut -c 31-35 | sort | tail -n 1

All pilots
grep ^HFPLT flights/*.igc | cut -d : -f 3 | sort | uniq

29

The Shell

Once we have our commands in a file, it is pretty natural to wonder if we can get bash to just run our commands from
the file instead of us having to type them back in each time.

5.1 Scripting

This is precisely what a shell script is: a file with a list of commands in it that we get our shell (bash) to run. Our
flights-command is almost a shell script as we have written it above. The only issue is that bash doesn’t know what
to make of the comments as they aren’t proper commands. We can fix this by prefixing them with # to mark them as
comments

[tyson@gra-login2 ~]$ nano flight-commands
...
[tyson@gra-login2 ~]$ cat flight-commands
Reference of useful pipes for working with igc files extracted from history

Date
grep '^HFDTE' flights/0144f5b1.igc | cut -c 6-
...

Now we can tell bash to run our commands directly for us from our file

[tyson@gra-login2 ~]$ source flight-commands

There are actually several ways this last step can be done

• . <filename> or source <filename> - run commands in current session

• (source <filename>) - run commands in a sub shell (current directory and such will be restored)

• bash <filename> - start a new shell, run the commands, and exit back to current shell

Earlier we had mentioned that Linux doesn’t use a .exe extension to identify executable files. Instead executable
files have the executable mode set on them. We can set this with the command chmod +x <file> and we can see
it as the x when we run look at the ls -l long listing. Because our program is a script, we also have to tell Linux
what program to use to run it by adding a special #!<interpreter> comment to start of it

[tyson@gra-login2 ~]$ ls -l flights-commands
-rw-r----- 1 tyson tyson 630 May 11 22:32 flights-commands
[tyson@gra-login2 ~]$ chmod +x flight-commands
-rwxr-x--- 1 tyson tyson 630 May 11 22:32 flights-commands
[tyson@gra-login2 ~]$ nano flight-commands
...
[tyson@gra-login2 ~]$ cat flight-commands
#!/bin/bash

Reference of useful pipes for working with igc files extracted from history
...

With all this in place (the executable mode set and the special interpret comment as the first line) we can now directly
run our file as if it was just another command

[tyson@gra-login2 ~]$ flight-commands
-bash: flight-commands: command not found
[tyson@gra-login2 ~]$./flight-commands
030816
Lena
...

30 Chapter 5. Automation

The Shell

The first run attempt failed because the current directory is not somewhere bash look for a command unless we
explicitly tell it to as we did in the second command. environment variable in a : delimited format. We can see the
setting of this variable by either using variable substitution with the echo command or using the declare command
to print it

[tyson@gra-login2 ~]$ echo $PATH
/opt/software/slurm/current/bin:...:/home/tyson/bin
[tyson@gra-login2 ~]$ declare -p PATH
declare -x PATH="/opt/software/slurm/current/bin:...:/home/tyson/bin"

The declare version is interesting as it actually prints the declare command we would have to run to set it to its
current value. This shows us additional information such as the -x which means that it is to be also made available
(exported) to commands that bash runs as well.

You might be tempted to add . (the current directory) to this list. This will work, but don’t do it. If someone puts
a ls command in a directory you go into and run ls in, it will then run their ls command and not the system one
you are expecting. Their ls command could do anything, including deleting all your files or giving them access to
your account in the background. The last element of PATH is a bin directory under your home directory. Create this
directory instead and put your scripts there

[tyson@gra-login2 ~]$ mkdir bin
[tyson@gra-login2 ~]$ mv flight-commands bin
[tyson@gra-login2 ~]$ flight-commands
030816
Lena
GBJY
...

Our command isn’t as useful as the other commands though as we can tell them what files to operate on. Our command
just ignores everything we tell it and always does the same operations on the same files

[tyson@gra-login2 ~]$ flight-commands --you-are-just-going-to-ignore-this--
030816
Lena
GBJY
...

To make our command more useful, we can use variables to change it from a specific command to run to a template
command to run. We do this by replacing the fixed filenames with special symbols (variables) that get replaced with
the arguments provided on the command line

• $<n> - the nth argument provided on the command line

• $@ - all the arguments provided on the command line separated by spaces

• $# - the number of arguments provided on the command line

With this we can make a copy of our example commands file and edit it into a command that that takes an igc filename
and prints the date of the flight

[tyson@gra-login2 ~]$ cd bin/flights-commands bin/igc-date
[tyson@gra-login2 ~]$ nano bin/igc-date
...
[tyson@gra-login2 ~]$ cat bin/igc-date
#!/bin/bash

Run the date extraction pipeline using the first argument as the source filename
grep '^HFDTE' $1 | cut -c 6-

(continues on next page)

5.1. Scripting 31

The Shell

(continued from previous page)

[tyson@gra-login2 ~]$ igc-date ../flights/fffdcaad.igc
250616

All we have done is put a name to pipeline template. This isn’t trivial though. Our minds can only deal with so
much information at any one point. Switching from thinking about a complex pipeline to a simple, appropriate-named
command, frees up the brain power required to successfully integrate that command into its some other complex
operation. Repeating this process lets us build up from small blocks to mansions.

5.1.1 Exercises

In these exercises, you will see the ; character. In bash the ; is equivalent to a newline (pressing enter on your
keyboard). This lets us write multiline commands on a single line. You will see when you scroll back through your
history (the up key), that bash will replace you newlines with ;s.

1. In the live session, we converted our example date extension pipeline into an new igc-date command

• igc-date <filename> - date field from the igc-file

Do this for the other pipelines to create the following commands

a. igc-pilot <filename> - pilot field from the igc-file

b. igc-plane <filename> - plane call sign from the igc-file

c. igc-start <filename> - starting (first) time for the igc-file

d. igc-end <filename> - ending (last) time for the igc-file

e. igc-maxalt <filename> - maximum altitude recorded in the igc-file

2. The [[<test>]] command lets us perform a variety of test (see help [[and help test). Com-
bined with the if <command>; then <command>; else <command>; fi command (see help
if), this lets us write a further improved igc-date command that provide feedback to the user if it was
invoked incorrectly.

[tyson@gra-login2 ~]$ cat bin/igc-date
#!/bin/bash
if [[$# -eq 1]]; then
grep '^HFDTE' $1 | cut -c 6-

else
echo "Proper usage is igc-date [igc file]"

fi

Give this a try and update the other commands to also do this.

3. Add an elif [[$# -eq 0]]; then <command> branch to make the command also support reading
the igc file directly from the keyboard when not given any filenames as most other commands do (remember
CTRL+c aborts and CTRL+d signals the end of the input when testing this out).

32 Chapter 5. Automation

The Shell

5.2 Submitting jobs

Earlier we discussed how the graham supercomputer is actually a large number very beefy standard computers, and
that you ran programs on these computers by telling the system

• what commands you want to run, and

• what resources those commands require to run.

Now that we know how to create scripts, we know how to do this first of these. The second is a simply a matter of
looking through the command options for sbatch (slurm batch) command. The Compute Canada documentation
wiki has pretty extensive coverage of most circumstances and what options should be specified. At a minimum we
need

• --time [[dd-]hh:]<mm> - amount of time required

• --mem-per-cpu [megabytes] - amount of memory required

• --account <account> - sponsor account to record usage against

• --output <file> - file to record output in

The script will be killed if it exceeds the resources specified, so we want to give ourselves a bit of room when specifying
our limits. We don’t want to be excessive though, as our script will not run until the system has secured all the specified
resources for us, so the more we specify, the longer we wait before running.

For most people there is only one account to submit the script under (their sponsor’s default account).

Running without --account option will print a list of possible accounts. For most users there is only one option
(their sponsor’s default account), for these guest accounts we use the special def-training-wa account which is
configured to allow us to start small training jobs without much delay. A sample submission might then be

[tyson@gra-login2 ~]$ sbatch --time 5 --mem-per-cpu 500 --account def-training-wa --
→˓output example.log igc-date flights/0144f5b1.igc
Submitted batch job 31352623

To avoid having to specify all these options every time, the sbatch command also lets us put them in the comments at
the top of our script file after the #!/bin/bash line but before any commands by prefixing them with SBATCH.

#SBATCH --mem-per-cpu 500
#SBATCH --account def-training-wa

If an option is specified on both the command line and the script file, the command line will take precedence. In this
sense, putting options in our script files gives us a powerful way to specify our defaults.

The returned number is the job identifier. Make sure to provide this to us if you ever request support for an issue
regarding your job so we can look it up. It can also be used to cancel a job with the scancel (slurm cancel)
command. The squeue (slurm queue) command shows you the status of queued jobs

[tyson@gra-login2 ~]$ squeue -u tyson
JOBID USER ACCOUNT NAME ST TIME_LEFT NODES CPUS

→˓GRES MIN_MEM NODELIST (REASON)
31352623 tyson def-training igc-date R 4:50 1 1

→˓(null) 500M gra1064 (None)

The -u <username> option limits the output to just the jobs queued for the specified user. From this we see that
our job is running (ST is R) on the node (computer) gra1064. Once a job has completed running, it is removed from
the queue and no longer shows up in the output of of squeue. Information about it can still be retrieved using the
sacct (slurm accounting) command

5.2. Submitting jobs 33

https://docs.computecanada.ca
https://docs.computecanada.ca

The Shell

[tyson@gra-login2 ~]$ sacct -S 2020-05-01 -u tyson
...

where the -S <date> option specifies how far back in the job records to report on (the default is just the current
day). We can also look in the specified output file to get any messages that may have been printed by the job (the
extracted flight date in our case)

[tyson@gra-login2 ~]$ cat example.log
030816

The supercomputers have a lot of standard software already installed on them. It is not possible to enable all these
software packages at the same time though, as many provide the same commands, so you need to use the module
command to tell the system what software you want enabled. The module avail command lists what software is
available. For example

[tyson@gra-login2 ~]$ module avail python
...

ipython-kernel/2.7 ipython-kernel/3.6 ipython-kernel/3.8 (D) python/3.
→˓6.10 (t,3.6) python/3.7.9 (t)

ipython-kernel/2.7 ipython-kernel/3.7 python/2.7.18 (t,2.7) python/3.
→˓7.7 (t,3.7) python/3.8.2 (t,D:3.8)
...

and the module module load command enables the choosen software

[tyson@gra-login2 ~]$ python --version
Python 3.7.7
[tyson@gra-login2 ~]$ module load python/3.8
[tyson@gra-login2 ~]$ python --version
Python 3.8.2

The module avail command only shows software that is compatible with the current core packages that loaded. To
see all available software you need to use the module spider command. It will also tell you what other packages
you need to load in order to make your desired package available. For example

[tyson@gra-login2 ~]$ module avail qgis
...
No module(s) or extension(s) found!
Use "module spider" to find all possible modules and extensions.
[tyson@gra-login2 ~]$ module spider qgis
...

Versions:
qgis/2.18.24
qgis/3.10.6

...
For detailed information about a specific "qgis" package (including how to load the

→˓modules) use the module's full name.
...
[tyson@gra-login2 ~]$ module spider qgis/3.10.6
...

You will need to load all module(s) on any one of the lines below before the
→˓"qgis/3.10.6" module is available to load.

StdEnv/2020 gcc/9.3.0
...

34 Chapter 5. Automation

The Shell

5.3 Loops

At the very start, we demoed how easy it was to add the date to the name of a large number of files with the command
line instead of a graphical user interface. We did this using a for loop. For loops let us create a template command
(such as one to renaming a file to include the date), and then apply it to a large number of cases.

Lets consider the case of getting all our pilot names. We have our igc-pilot command that gives us the pilot field
from a single igc file. If we wanted to retrieve all our pilot, we would have to run this command once for each file.
That is

[tyson@gra-login2 ~]$ igc-pilot flights/0144f5b1.igc
[tyson@gra-login2 ~]$ igc-pilot flights/04616075.igc
[tyson@gra-login2 ~]$ igc-pilot flights/054b9ff8.igc
...

Comparing these first few cases, it is pretty clear that the only thing changing between each of these commands is the
name of the igc file. That is, we have a common command template that we are running

igc-pilot $file

where $file is placeholder for the filename that changes with each command. Our initial commands could then
equally well be written as

[tyson@gra-login2 ~]$ file=flights/0144f5b1.igc; igc-pilot $file
[tyson@gra-login2 ~]$ file=flights/04616075.igc; igc-pilot $file
[tyson@gra-login2 ~]$ file=flights/054b9ff8.igc; igc-pilot $file
...

where we are simply setting the value file each time and then doing our template that runs igc-file on our file.

A for loop is nothing more than special syntax for doing that only requires us to have to specify the template once,
which makes sense as the template is the same every time. In bash the syntax looks like this

for file in flights/0144f5b1.igc flights/04616075.igc flights/054b9ff8.igc ...; do
igc-pilot $file

done

By bringing the list of file we run our template for into one place, we have also now made it possible for us to specify
our file list using a glob pattern. That is, we can say

[tyson@gra-login2 ~]$ for file in flights/*.igc; do
igc-pilot $file

done
Lena
Bill
Lena
...

A for statement is also a command, and can be used as any other commands. For example, its output can be piped
through sort and uniq in order to obtain a compact list of our pilots

[tyson@gra-login2 ~]$ for file in flights/*.igc; do igc-pilot $file; done | sort |
→˓uniq
Aasia
Bill
Fred
Lena

(continues on next page)

5.3. Loops 35

The Shell

(continued from previous page)

Mary
Mo

When we say $(<command>) in bash, it gets replaced with the output <command>. We can use this to write a
powerful for loop to (finally!) rename all our files to something more useful than their current names

[tyson@gra-login2 ~]$ cd flights
[tyson@gra-login2 ~]$ for file in *.igc; do

pilot=$(igc-pilot $file)
date=$(igc-date $file)
mv $file $date-$pilot-$file

done
[tyson@gra-login2 ~]$ ls
000000-Lena-551a9c25.igc 010815-Aasia-7cded70f.igc 010815-Mary-4bf15e07.igc ...

Having the pilot name and date in each of the files allows us to easily do things like select all the files for a specific
pilot or year using glob patterns (e.g., *-Lena-* will select all of Lena’s flights).

5.3.1 Exercises

In this exercise we are going to create a triple loop to print out the highest altitude obtained by each pilot for each year
by filling in the missing command in the following double loop

for year in 15 16 17; do
for pilot in Aasia Bill Fred Lena Mary Mo; do
maxalt=$(<command to retrieve greatest altitude for $pilot in $year>)
echo "$year - $pilot: $maxalt"

done
done

Past experience has shown this is a very tough problem for people to solve outright. When you get stuck like this, the
key is to switch from trying to find an outright solution, and instead focus on trying to break the problem down into a
series of smaller problems that you can produce outright solutions to. Often the steps become obvious if you do a few
cases by hand. You just need to take note of what you did and get the computer to do the same.

For this problem, we can break it down into the following sub-problems (which are the exercise)

1. Extract the highest altitude for a single flight (we made a command for this).

2. Come up with a glob pattern to select all the flights in a given year for a given pilot.

3. Use both of these to extract the highest altitudes for a given pilot in a given year (put the highest altitude
command in a for loop over the files that match the glob pattern).

4. Extract the highest of the highest flight altitudes (pipe the output of the for loop into a pipeline that extracts the
largest value).

5. Insert the command you built up in 1-4 into the loop above and run that to see which pilot achieved the highest
altitude each year.

36 Chapter 5. Automation

CHAPTER

SIX

QUICK REFERENCE

6.1 Key Features

Unix Architecture page on Wikipedia

Files are stored on disk in a hierarchical file system, with a single top location throughout the system
(root, or “/”), with both files and directories, subdirectories, sub-subdirectories, and so on below it.

With few exceptions, devices and some types of communications between processes are managed and
visible as files or pseudo-files within the file system hierarchy. This is known as everything’s a file.

Doug McIlroy (inventor of Unix pipes)

This is the Unix philosophy: Write programs that do one thing and do it well. Write programs to work
together. Write programs to handle text streams, because that is a universal interface

6.2 File system

Key differences from Windows

• there are mount points instead of A:, C:, etc.,

• directories and files are case sensitive, and

• the separation character is / instead of \

What would appear as a separate media hierarchy in Windows (e.g., A:\MyDir\MyCode.c) simply appears under
a separate directory (known as a mount point) in Unix (e.g., /media/disk/MyDir/MyCode.c).

6.2.1 Root (/)

• /boot - boot loader files

• /etc- configuration files

• /dev - device files

• /bin - user programs required for booting

• /sbin - system programs required for booting

• /lib{,32,64} - libraries required for booting

• /usr - programs, libraries, and such not required for booting

• /root - superuser directory

37

The Shell

• /home - users directories (shared by all nodes)

• /tmp - temporary files

• /var - variable data (spool files, log files, etc.)

• /opt - add on package directory

• /media - mount point for removable media

• /proc - process information pseudo-file system

• /sys - system information pseudo-file system

6.2.2 User (/usr)

The /usr directory is split off from the / directory mostly because disk space used to be precious.

• /usr/bin - user programs not required for booting

• /usr/sbin - system programs not required for booting

• /usr/lib{,32,64} - libraries not required for booting

• /usr/games - game programs

• /usr/share - architecture independent data

• /usr/man - on-line manuals

• /usr/src - source code

• /usr/include - header files

6.2.3 User Local (/usr/local)

The /usr/local directory is a place to locally install programs without messing up /usr.

• /usr/bin - user programs not required for booting

• /usr/sbin - system programs not required for booting

• /usr/lib{,32,64} - libraries not required for booting

• /usr/games - game programs

• /usr/share - architecture independent data

• /usr/man - on-line manuals

• /usr/src - source code

• /usr/include - header files

38 Chapter 6. Quick Reference

The Shell

6.2.4 Compute Canada

• /project - group data files (shared by all nodes and all group members)

• /scratch - user temporary data files (local to each cluster)

6.3 Devices

Some of the special /dev files are

• /dev/null - discards all data written and provides no data

• /dev/zero - provides a constant stream of NULL characters

• /dev/random - provides a stream of random characters

• /dev/urandom - provides a constant stream of pseudo-random characters

6.4 Commands

Programs are run by specifying the command followed by the arguments separated by spaces.

program [argument. . .]

By convention, arguments are switches followed by strings (e.g., regexps, paths, file names, etc.). Switches are usually
single dashes followed by letter for each switch or a double dash followed by a descriptive string (e.g., rm -fr
mydir or rm --force --recurse mydir). Most commands also understand

• - - as a file name means read or write to the terminal

• -- - the end of switches and the start of the strings (in case the string needs to start with - or --).

6.4.1 Help

Traditionally man pages (a single help page) have been the de facto documentation source, however, some software
suites have been switching to info pages (a collection of hyperlinked pages). Help for the shell built in commands is
available by the built in help.

• man command - on-line reference manuals

• apropos [-a] keyword . . . - search on-line reference manuals (same as man -k)

• info item - info documents

6.4.2 Directories

The current directory is . and the parent directory is ...

• pwd - current directory

• cd directory - change directory

• mkdir directory - make directory

• rmdir directory - remove directory

6.3. Devices 39

The Shell

6.4.3 Files

Files beginning with . are considered hidden and not normally shown.

• ls [-a] [-l] destination - list files

• cp [-a|-p] [-r] [-s] source . . . destination - copy files

• ln [-s] target name - link to file

• mv source . . . destination - move files

• rm [-r] [-f] destination . . . - remove files

6.4.4 Permissions

Standard permissions are read, write, and execute for user, group, and other. They are frequently abbreviated as three
octal numbers (0=000, 1=001, 2=010, 3=011, 4=100, 5=101, 6=110, 7=111) corresponding to user read, write, and
execute; group read, write, and execute; other read, write, and execute.

For directories, read allows the contents to be listed, write allows files to be added or removed, and execute allows the
directory to be traversed.

• chmod [u|g|o|a]. . .[+|-|=][r|w|x|X]. . . [-R] destination . . . - change mode (user/group/other
permissions)

• chown [-R] user destination . . . - change owner

• chgrp [-R] group destination . . . - change group

• setfacl [-m|-x] [-R] [[u|g|o|m]...:user:[r|w|x|X]...] destination* . . . - set file access
control list *(individual users)

• getfacl destination . . . - get file access control list (individual users)

6.4.5 View Files

The space key will advance a page and the q key will quit in more and less. In addition, the arrow keys will move
in the appropriate direction in less.

• more file - view one page at a time

• less file - view forward and backwards

• cat [file . . .] - concatenate files in sequence

• head [-n lines] [file . . .] - first part of files

• tail [-n lines] [-f] [file . . .] - last part of files

• paste [-d deliminator] [file . . .] - concatenate files in parallel

• cut [-d deliminator] [-f range] [file . . .] - extract columns

• sort [-g] [-f] [-u] [file . . .] - sort lines

40 Chapter 6. Quick Reference

The Shell

6.4.6 Comparison

Digests are numbers computed from the content of files such that it is extremely difficult to come up with two different
files with the same number.

• diff [-w] [-i] [-u number|-y] file1 file2 - compare files line by line

• sdiff [-W] file1 file2 - compare files side by side (similar to diff -y)

• md5sum [file . . .] - compute MD5 digest

• sha256sum [file . . .] - compute SHA256 digest

6.4.7 Searching

• egrep [-i] [-v] regexp [file . . .] - find lines matching regexp in files (same as grep -E)

• fgrep [-i] [-v] strings [file . . .] - find lines matching strings in files (same as grep -F)

• find directory . . . predicates - find files satisfying predicates in directories

6.4.8 Process

Each process (a running programs) is identified by a unique number.

• ps [-A|-U user] [-H] [-f] - process list

• kill [-s signal] process . . . - signal process

• nohup command - disconnect command

• nice command - low priority command

6.4.9 Remote

• ssh [user@]host [command] - login to remote system

• scp [[user@]host:] source . . . [[user@]host:]destination - copy remote files

• unix2dos file . . . - convert to DOS line breaks

• dos2unix file . . . - convert to Unix line breaks

6.4.10 Other

• sleep seconds - waits given number of seconds

• echo [-n] [-e] strings - prints strings

• test tests - perform various string (e.g., equality) of file (e.g., existence) tests

6.4. Commands 41

The Shell

6.5 Editors

The two most popular Unix editors are vi and emacs. Both are extremely powerful and very complex. A simpler
editor is nano.

• vi [file . . .] - common Unix editor

• emacs [-nw] [file . . .] - common Unix editor

• nano [file . . .] - simple Unix editor

6.5.1 Vi

Vi distinguishes between command and insert mode. Command mode allows you to move around and enter commands.
Insert mode allows you to edit text.

• :h - help

• :w[!] [file] - write file (excalmation forces it)

• :e file - edit file

• :q[!] - quit Vi (exclamation forces it)

• :n[!] - next file (excalmation forces it)

• [a|A] - append after cursor or at end of line

• [i|I] - insert (capital for beginning of line)

• [v|V] - select to cursor or to end of line

• [c[w|c]|C] - change selection/word/line or to end of line

• [d[w|d]|D] - delete selection/word/line or to end of line

• [y[w|y]|Y] - copy selection/word/line or to end of line

• [p|P] - paste before or after cursor/line

• J - join lines

• [u|U] - undo (capital for current line)

• ESC - revert to command mode

6.5.2 Emacs

Emacs is a more traditional single mode editor. Partially typed entries can be completed by pressing TAB (twice to
list).

• CTRL+h - help (b list keys and k describes keys)

• CTRL+g - abort current operation

• CTRL+[1|2|3] - single window or split vertical/horizontal window

• CTRL+x CTRL+s - save current buffer

• CTRL+x CTRL+b - switch current buffer

• CTRL+x CTRL+k - quit current buffer

• CTRL+x CTRL+c - quit Emacs

42 Chapter 6. Quick Reference

The Shell

• CTRL+SPACE - mark start of region

• CTRL+w - copy from start of region to cursor

• CTRL+y - past copied region

• CTRL+k - delete to end of line or line if start of line

• CTRL+s - search for text

• CTRL+_ - undo

• ALT+x - enter command (TAB twice to list)

6.6 Command Line

The shell is a command line interpreter that lets users run programs. It proves ways to start programs and to manipu-
late/setup the context in which they run. The main parts of this are

• arguments,

• environment,

• standard input (stdin),

• standard output (stdout),

• standard error (stderr), and

• return value

A standard command looks like so

command [<stdinfile] [>[>]stdoutfile] [2>[>]stderrfile] [&]

6.6.1 Arguments

Options passed to the program to tweak it’s behaviour. Traditionally switches (e.g., -xzf or --extract --gzip
--file) followed by strings (e.g., regexp, paths, file names, etc.). Partially typed file names and directories can be
completed by pressing TAB (twice to list).

• . . .{. . .}. . . (brace expansion) - if not quoted, expands once for each comma separated list or once for each
number in .. separated range

• ~. . . (tilde expansion) - if not quoted, expands to home directory of user following the tilde or the current user
if no user specified

• ${...} (parameter and variable expansion) - if not single quoted, expands to environment variable specified
or the corresponding parameter if number specified ({ and } are not always required)

• $(...) (command substitution) - if not single quoted, expands to output for command (`. . .` is an alternative
syntax)

• $((...)) (arithmetic substitution) - if not single quoted, expands to evaluated result of the expression

• . . . (word splitting) - if not quoted, splits into separate arguments anywhere an IFS character (by default space,
tab, and newline) occurs

• . . .[*|?|[. . .]]. . . (path name expansion) - if not quoted, is considered a pattern and replaced with matching
file names (* matches any string, ? matches any character, and [. . .] matches all the enclosed characters)

6.6. Command Line 43

The Shell

6.6.2 Quoting

Special characters can be escaped with \ to remove their special meaning. Single and double quoting strings affect
escaping as well as which expansions and substitutions are preformed.

• '. . .' - no expansion or substitutions is preformed

• ". . ." - only escaping, parameter and variable expansion, command substitutions, and arithmetic substitutions
occur

6.6.3 Environment

A set of key value pairs (e.g., USER=root) that programs can look up and use. Each program gets a fresh copy (i.e.,
changing it will not change the original) of all environment variables marked for export.

• key=value - make a local environment variable

• export key[=value] - mark an environment variable for export

• unset key - delete an environment variable

Two important environment variables are

• PATH - list of : separated directories to look for programs in

• LD_LIBRARY_PATH - list of : separated directories to look for libraries in (ahead of the system defaults
specified in /etc/ld.so.conf)

6.6.4 Input and Output

Programs are run with a standard place to read input from, a standard place to write output to, and a standard place
to write error messages to. By default these are all the terminal window in which the program is run. This can be
changed via

• < file - read standard input from file

• [>|>>] file - write standard output to file (overwriting or appending)

• [2>|2>>] file - write standard error to file (overwriting or appending)

• [&>|&>>] file - write standard output and error to file (overwriting or appending)

6.6.5 Status

Programs return an integer exit status. The stats of the most recent executed foreground command is available as $?.

• 0 - program completed successfully

• 1. . . 127 - program specific error code

• 128. . . 255 - program terminated by signal 127+signal

44 Chapter 6. Quick Reference

The Shell

6.6.6 Job Control

Programs run in the foreground by default. Background jobs will suspended if they require input. Existing jobs will
be sent SIGHUP when the shell exits.

• jobs - list jobs

• fg id - switch job to foreground

• bg id . . . - switch jobs to background

• disown id . . . - release jobs from job control

Foreground jobs usually respond to the following key combinations

• CTRL+Z - suspend program

• CTRL+C - abort program

• CTRL+D - end of input

6.6.7 Multiple Commands

Commands can be combined in several ways.

• . . . ; . . . - run first command and then second (same as pressing ENTER)

• . . . & . . . - run first command in background at the same time as second

• . . . | . . . - run first command in background with its output going to the second as input

• . . . && . . . - run first command and then second only if first returns success

• . . . || . . . - run first command and then second only if first returns failure

Commands can be combined in several ways.

• {. . .} - group command in current shell – has to end with ; or newline

• (. . .) - group command in sub shell – does not have to end with ; or newline

6.7 Scripting

Executable text files that start with #!command (#!/bin/bash for shell scripts) are run as command file.

6.7.1 Parameters

• $# - number of parameters

• $0 - name of shell or shell script

• $number - positional parameter

• $* - all positional parameters (in double quotes expands as one argument)

• $@ - all positional parameters (in double quotes expands as separate arguments)

The following functions manipulate parameters

• shift [number] - drop specified number of parameters (one if unspecified)

• set parameter . . . - set parameters to given parameters

6.7. Scripting 45

The Shell

6.7.2 Programming

• if command . . .; then command . . .; [elif command . . .; then command . . .;] . . . [else
command . . .;] fi - conditionally run commands depending on success if and elif commands

• for key in value . . .; do command . . .; done - for each value, set key to value and run commands

• while command . . .; do command . . .; done - repeatedly run commands until while commands fail

• case value in [pattern [| pattern]. . .) command . . .;;] . . . esac - run commands where first pattern
matches (same as path name expansion)

• continue [number] - next iteration of enclosed loop (last if not specified)

• break [number] - exit enclosed loop (last if not specified)

• function name { command; } . . . - create a command that runs the commands with passed parameters

• return [number] - return from function with given exit status (last command if not specified)

• exit [number] - quit shell with given exit status (last command if not specified)

6.8 Regular Expressions

Regular expressions are strings where several of the non-alphanumeric characters have special meaning. They provide
a concise and flexible means for string searching and replacing and are used by several Unix programs.

6.8.1 Anchoring

• ^ - match start of line

• $ - match end of line

6.8.2 Characters

• character - the indicated character

• . - any character

• [. . .] - any character in the list or range (^ inverts)

6.8.3 Combining

• (. . .) - group

• . . .|. . . - match either or

46 Chapter 6. Quick Reference

The Shell

6.8.4 Repetition

• ? - match zero or one times

• * - match zero or more times

• + - match one or more times

• {. . .} - match a range of times

6.8.5 Replacement

• \digit - substitute text matched by corresponding group

6.8. Regular Expressions 47

The Shell

48 Chapter 6. Quick Reference

CHAPTER

SEVEN

SEARCH

• search

49

	Introduction
	Etiquette, Zoom, and Slack
	Motivation

	Supercomputers
	Usefulness
	Canada
	Accounts
	Systems
	Storage
	Running programs
	Support

	Accessing
	Logging in
	Data storage
	Getting around
	Technicalities
	Transferring files

	Composition
	Viewing and editing
	Regular expressions and globing
	Redirection and pipes

	Automation
	Scripting
	Submitting jobs
	Loops

	Quick Reference
	Key Features
	File system
	Devices
	Commands
	Editors
	Command Line
	Scripting
	Regular Expressions

	Search

